
AIRS data description

Part 1: monthly climatology

David W. Pierce

Ocean Research Consultants

david@david.pierce.name

15 March 2005

Contents

1 Introduction 3

2 Surface Skin Temperature 4

3 Relative Humidity 4

4 Three-Dimensional Temperature 13

5 Outgoing Longwave Radiation (OLR) 15

6 Summary 15

A An R script to convert HDF-EOS to netCDF 16

2

1 Introduction

The purpose of this note is twofold. First, it is to display some of the basic characteristics

of the AIRS data. At the moment, the data has largely been unanalyzed, but it is hard to

know how to analyze it in detail before one knows what the data “looks like.” The bulk of

this note, then, simply presents plots of various aspects of the data, so that an

understanding of its basic mean state and variability can be appreciated. In this first work,

monthly and seasonal values are emphasized; the plots are generally presented without

comment.

The second purpose is to demonstrate the use of the JPL netcdf operators (“jnc”

operators) and other JPL deliverables. Processing started with the twice-daily level 3

gridded data in HDF-EOS format. This was converted to netCDF using the hdfeos-R

package version 0.3, using the script in Appendix A. All subsequent data processing for

the figures was done with version 0.5 of the jnc operators. Plotting was done with R, and a

R plotting support library that is also included in the JPL deliverables. Therefore, at least

conceptually, all the results presented here could have been done in the final JPL

processing environment, whether web based, driven by a python script, or from the

command line.

The data included covers the period September 2002 through January 2005. It should

be pointed out that data aliasing issues are problematic with the satellite data, which are

not daily averages but rather samples taken twice daily. The “ascending” data are taken at

1330 local time, while the “descending” data are taken at 0130 local time. As a result,

there is basically a night sample and a day sample. Problems interpreting this data can

arise if processes that are linked to the diurnal cycle fall outside of these two sample

times, or, even worse, wander into and out of the sample times over the course of a year.

For example, imagine a tropical region where it rains every afternoon, but in the early

afternoon during winter and late afternoon during summer. This would incorrectly appear

in the satellite record as dry summers and wet winters. No attempt is made to correct for

this kind of problem in the basic analysis done here.

Another issue that complicates the interpretation of the figures is that the currently

available level 3 gridded data does not seem to retain an explicit data retrieval quality flag,

although it is present in the level 2 data. (Or, if it is included, it is done so implicitly, by

virtue of no values being recorded for bad retrievals.) It will be seen in the figures that

some values seem physically unrealistic; for example, the very warm daily surface high

temperature values over land (Figure 1). It may be that these would be masked by the

3

quality flag, were it present. The physical oddities will not be commented on further,

pending investigation of whether the data quality flag was taken into account in the level 3

data and, if not, if it can be retrieved. Also, it should be kept in mind that part of the

purpose of this project is to have the data processing operators be already available when

the final released version of the data becomes available. As of this writing, the final data

has not been released, so the data set used here should be considered preliminary, and

subject to modification.

2 Surface Skin Temperature

Figure 1 shows the monthly surface skin temperature for the ascending orbit, while

Figure 2 shows the same thing for the descending orbit. The difference between the two,

which is related to the diurnal temperature cycle subject to the aliasing caveats noted in

the introduction, is shown in Figure 3.

As one would expect, the diurnal range is far less over the ocean than over land, with

dry land areas (such as the Sahara and central Asian deserts) showing the largest diurnal

range. The increase in the diurnal range of ocean temperature in the summer hemisphere

is also evident, and seems to be a noticably larger effect in the southern hemisphere than

in the northern hemisphere.

Another interesting point is the enhanced diurnal variability in oceanic upwelling

regions along the west coast of the continents. These regions also tend to be subject to

persistent stratus decks, especially off the west coast of South America and central Africa.

It is perhaps not immediately obvious why these regions should have a diurnal cycle

appreciably stronger than other regions.

The standard deviation of the daily surface skin temperature anomalies are shown in

Figure 4 for both the ascending branch of the orbit (upper panel) and the descending

branch (lower panel). The greater day-to-day variability over continental interiors is, of

course, very pronounced, except in the tropical regions.

3 Relative Humidity

The AIRS instrument can sense relative humidity in the vertical as well as the horizontal,

which is a major advance in instrumentation. Figure 5 shows the relative humidity

reported at level 1, the level nearest the surface. Some of the largest seasonal changes in

humidity occur over India and Australia; in most other regions the seasonal differences

4

−150 −100 −50 0 50 100 150

−50

0

50

SurfSkinTemp_A (DJF)

−150 −100 −50 0 50 100 150

−50

0

50

SurfSkinTemp_A (MAM)

−150 −100 −50 0 50 100 150

−50

0

50

SurfSkinTemp_A (JJA)

−150 −100 −50 0 50 100 150

−50

0

50

SurfSkinTemp_A (SON)

−30 −20 −10 0 10 20 30 40

Figure 1: Surface skin temperature (degC) on the ascending branch of the orbit (1330 local

time).

5

−150 −100 −50 0 50 100 150

−50

0

50

SurfSkinTemp_D (DJF)

−150 −100 −50 0 50 100 150

−50

0

50

SurfSkinTemp_D (MAM)

−150 −100 −50 0 50 100 150

−50

0

50

SurfSkinTemp_D (JJA)

−150 −100 −50 0 50 100 150

−50

0

50

SurfSkinTemp_D (SON)

−30 −20 −10 0 10 20 30 40

Figure 2: Surface skin temperature (degC) on the descending branch of the orbit (0130

local time).

6

−150 −100 −50 0 50 100 150

−50

0

50

SurfSkinTemp_A−minus−D (DJF)

−150 −100 −50 0 50 100 150

−50

0

50

SurfSkinTemp_A−minus−D (MAM)

−150 −100 −50 0 50 100 150

−50

0

50

SurfSkinTemp_A−minus−D (JJA)

−150 −100 −50 0 50 100 150

−50

0

50

SurfSkinTemp_A−minus−D (SON)

0 5 10 15 20 25 30

Figure 3: Difference (degC) between surface skin temperature on the ascending branch and

descending branch of the orbit.

7

−150 −100 −50 0 50 100 150

−50

0

50

SurfSkinTemp_A.daily

−150 −100 −50 0 50 100 150

−50

0

50

SurfSkinTemp_D.daily

0 1 2 3 4

Figure 4: Standard deviation (degC) of the daily anomalies for surface skin temperature.

Upper panel: the ascending branch of the orbit (1330 local time). Lower panel: the de-

scending branch of the orbit (0130 local time).

8

−150 −100 −50 0 50 100 150

−50

0

50

RelHumid_A (DJF)

−150 −100 −50 0 50 100 150

−50

0

50

RelHumid_A (MAM)

−150 −100 −50 0 50 100 150

−50

0

50

RelHumid_A (JJA)

−150 −100 −50 0 50 100 150

−50

0

50

RelHumid_A (SON)

20 40 60 80

Figure 5: Seasonal average relative humidity (percent) at the nearest surface level, for the

ascending branch of the orbit (1330 local time).

appear rather modest. The low humidity values over near-complete areal coverage of sea

ice (for example, around Antarctica in the southern hemisphere winter) are notable, and

suggest that if the data quality flags indicate the retrievals are valid in this region, the

extend of sea ice would be easily obtainable. On the other hand, there is also a suggestion

that the reported values may be skewed in the marginal ice zone, as they are higher there

than anywhere else.

A similar plot, but at level 5, is shown in Figure 6. The very dry descending branches

of the Hadley cell show up clearly at this level. This is especially true in the Southern

hemisphere, where the band of dry air is near continuous at a latitude of about 20 S. In

both hemispheres, the relative humidity values of this dry air are noticably lower in the

winter than in the summer.

9

−150 −100 −50 0 50 100 150

−50

0

50

RelHumid_A (DJF)

−150 −100 −50 0 50 100 150

−50

0

50

RelHumid_A (MAM)

−150 −100 −50 0 50 100 150

−50

0

50

RelHumid_A (JJA)

−150 −100 −50 0 50 100 150

−50

0

50

RelHumid_A (SON)

20 40 60 80

Figure 6: Seasonal average relative humidity (percent) at level 5, for the ascending branch

of the orbit (1330 local time).

10

−50 0 50

2

4

6

8

10

12 RelHumid_A (DJF)

Le
ve

l

−50 0 50

2

4

6

8

10

12 RelHumid_A (MAM)

−50 0 50

2

4

6

8

10

12 RelHumid_A (JJA)

Latitude

Le
ve

l

−50 0 50

2

4

6

8

10

12 RelHumid_A (SON)

Latitude

20 40 60 80

Figure 7: Zonal mean relative humidity (percent) by season as a function of latitude and

vertical level, for the ascending branch of the orbit (1330 local time).

The zonal mean values as a function of latitude and level are shown in Figure 7.

Again, in the dry air that is sinking at about 20 N, the relative humidity is appreciably

lower in the winter than in the summer. Also, the overall humidity levels of this sinking

air are rather lower in the Southern hemisphere than in the Northern. The standard

deviation of the monthly values for the zonally averaged relative humidity are shown in

Figure 8. The largest values are reported as being in the polar regions of both

hemispheres, although they are at high altitudes in the Southern hemisphere and low

altitudes in the Northern hemisphere. Low variability is seen near the surface in the

tropics, and at altitude in the midlatitudes.

11

−50 0 50

2

4

6

8

10

12 RelHumid_A

Latitude

Le
ve

l

2 4 6 8 10

Figure 8: Standard deviation (percent) of the zonal mean relative humidity as a function of

latitude and vertical level, for the ascending branch of the orbit (1330 local time).

12

−50 0 50

5

10

15

20

Temperature_A.monthly (DJF)

Le
ve

l

−50 0 50

5

10

15

20

Temperature_A.monthly (MAM)

−50 0 50

5

10

15

20

Temperature_A.monthly (JJA)

Latitude

Le
ve

l

−50 0 50

5

10

15

20

Temperature_A.monthly (SON)

Latitude

200 220 240 260 280 300

Figure 9: Zonal mean monthly temperature (degC) by season, as a function of latitude and

vertical level, for the ascending branch of the orbit (1330 local time).

4 Three-Dimensional Temperature

In addition to the surface skin temperature noted above, AIRS samples atmospheric

temperature on 24 vertical levels. Zonal mean averages of seasonally average temperature

are shown in Figure 9, and the standard deviation of monthly anomalies in Figure 10. This

of course shows the cooler atmospheric temperatures in the winter hemisphere – no

surprise – and the very low temperatures in particular over Antarctica in the winter. The

standard deviation reports a strong bias towards high values of variability over the Arctic

ocean, which has near twice the standard deviation of values over Antarctica. Values are

generally lowest in the tropics, especially near the surface.

13

−50 0 50

5

10

15

20

Temperature_A

Latitude

Le
ve

l

0 1 2 3 4 5 6 7

Figure 10: Standard deviation (deg-C) of the zonal mean monthly temperature anomaly as

a function of latitude and vertical level, for the ascending branch of the orbit (1330 local

time).

14

5 Outgoing Longwave Radiation (OLR)

The OLR field in the level 3 data appears to have a problem; all values are either zero or

the fill value. This goes for both branches of the orbit (ascending and descending).

6 Summary

The purpose of this note has been to show a few climatological data fields from the AIRS

level 3 data. It should be kept in mind that a primary motivation for this exercise has been

to demonstrate the utility of the jnc scientific operators, which were used for all data

processing (the plotting was done in R). As such, a preliminary version of the data was

used, but this is not relevant to demonstrating the ability of the operators to handle the data

processing requirements. The preliminary nature of the data does seem to be evident in a

few of the reported fields, however. Also, the sampling and aliasing issues are significant,

and need to be taken into account when the results are examined. This problem is intrinsic

to the way the satellite takes its observations (once in the night, once in the day) and so

will always be an issue, even in the final version of the data set.

From a purely data processing point of view, a few issues do come up. One is that the

level 3 data, as delivered, does not appear to retain the data quality flag that is present in

the level 2 data. It is not clear whether this is because the information has already been

incorporated into the level 3 data by, for example, omitting from the level 3 processing all

level 2 data that does not have a good quality flag. One argument against this is the fact

that some of the fields seem to have implausible values in places where retrieval quality

might be suspect, for example, in the marginal sea ice zone. Another issue is that the

outgoing longwave radiation (OLR) data appears to be missing from the current level 3

product. Presumably, since this is not yet the final release of the data, these issues will be

resolved before the final data product is released.

15

A An R script to convert HDF-EOS to netCDF

tunits <- ’seconds since 1993-01-01 00:00’ # HDF-EOS standard (?)

#===

convert_latlon_2d_1d <- function(lat2d, lon2d) {

nd <- length(dim(lat2d))

if(nd != 2)

stop(paste("expected input lat2d to have 2 dims; instead it has",nd))

nd <- length(dim(lon2d))

if(nd != 2)

stop(paste("expected input lon2d to have 2 dims; instead it has",nd))

nx <- dim(lat2d)[1]

ny <- dim(lat2d)[2]

if(nx != dim(lon2d)[1])

stop(paste("expected lat2d and lon2d to have same nx; but they don’t",nx,dim(lon2d)[1]))

if(ny != dim(lon2d)[2])

stop(paste("expected lat2d and lon2d to have same nx; but they don’t",ny,dim(lon2d)[2]))

#--

See if lat can be expressed as a repeated 1-d array

#--

for(iy in 1:ny)

for(ix in 2:nx)

if(lat2d[ix,iy] != lat2d[1,iy])

stop("sorry, latitude cannot be expressed as a simple function of X -- reprogram!")

#-------------

Same for lon

#-------------

for(ix in 1:nx)

for(iy in 2:ny)

if(lon2d[ix,iy] != lon2d[ix,1])

stop("sorry, longitude cannot be expressed as a simple function of y -- reprogram!")

rv <- list()

rv$lat <- lat2d[1,]

rv$lon <- lon2d[,1]

return(rv)

}

#===

parse_fname_for_date <- function(fname, year, month) {

#---

First find where the string "year.month." exists in the filename

#---

16

iy <- as.integer(year)

im <- as.integer(month)

strpat <- paste(mformatC("%04d",iy),".",

mformatC("%02d",im),".", sep=’’)

npat <- nchar(strpat)

ipl <- -1

for(i in 1:nchar(fname)) {

if(strpat == substr(fname,i,i+npat-1))

ipl <- i

}

if(ipl < 0)

stop(paste("did not find year/month pattern in filename! Pattern=",

strpat," filename=",fname))

example: ’2003/01/AIRS.2003.01.01.L3.RetStd001.v4.0.8.0.L3_Test.T05025125354.hdf’

yr <- (substr(fname, ipl, ipl+3))

mo <- (substr(fname, ipl+5, ipl+6))

dy <- (substr(fname, ipl+8, ipl+9))

date <- list()

class(date) <- ’utDate’

date$year <- yr

date$month <- mo

date$day <- dy

#--

Should fix these to correspond to ascending or descending branches --

get info from Amy or Eric

#--

date$hour <- 12

date$minute <- 0

date$second <- 0.

print(date)

tval <- utInvCalendar(date, tunits)

return(tval)

}

#===

dat2nc <- function(data_dir, year, month, grid, field, units) {

month_tag <- mformatC(’%02d’, month)

dir <- paste(data_dir,"/", year,"/",month_tag,"/airx3std",sep=’’)

files <- getfilelist(paste(dir,"/*.hdf",sep=""))

nx <- 360

ny <- 180

outfile <- paste(field,’.’,year,’.’,month_tag,’.nc’,sep=’’)

got_latlon_ok <- FALSE

file_to_examine <- 1

17

while(! got_latlon_ok) {

#----------------

Get lat and lon

#----------------

hdf <- EosGDOpen(files[file_to_examine])

if(hdf$hdfid == -1) {

print(paste("when trying to get location, error opening file",files[file_to_examine]))

crash

}

lat2d <- EosGDreadfield(hdf,’location’,’Latitude’)

lon2d <- EosGDreadfield(hdf,’location’,’Longitude’)

if((length(lat2d)>1) && (length(lon2d)>1)) {

#------------------------------------

Convert 2-D lat/lon to 1-D, or fail

#------------------------------------

rv <- convert_latlon_2d_1d(lat2d, lon2d)

lat <- rv$lat

lon <- rv$lon

got_latlon_ok <- TRUE

}

else

file_to_examine <- file_to_examine + 1

#---

How many dims does the requested field have?

#---

ff <- hdf$grid[[grid]]$field[[field]]

ndims <- ff$ndims

if(ndims > 2) {

if(ndims == 3) {

nz <- ff$dimlen[1] # C ordering

zvals <- 1:nz # ??? where do we get the real values??

}

else

stop(paste("uncaught case for # of dims in field:",ndims))

}

EosGDClose(hdf)

}

#-------------------

Create output file

#-------------------

dimx <- dim.def.ncdf(’Lon’,’degreesE’,lon)

dimy <- dim.def.ncdf(’Lat’,’degreesN’,lat)

dimlist <- list(dimx,dimy)

if(ndims >= 3) {

dimz <- dim.def.ncdf(’Lev’,’1’,zvals)

dimlist[[3]] <- dimz

}

18

dimt <- dim.def.ncdf(’Time’,tunits,0,unlim=TRUE)

dimlist[[ndims+1]] <- dimt

mv <- 1.e30

mainvar <- var.def.ncdf(field, units, dimlist,

longname=paste("field",field,"from grid",grid),mv)

ncid <- create.ncdf(outfile, list(mainvar))

#---

Set up start and count to use. Remember that ’ndims’

indicates SPATIAL dims only; we actually have one more

than that, since we add a time dim.

#---

if(ndims == 2) {

start <- c(1,1,1)

count <- c(nx,ny,1)

}

else if(ndims == 3) {

start <- c(1,1,1,1)

count <- c(nx,ny,nz,1)

}

else

stop(paste("uncaught case for ndims=",ndims))

nf <- length(files)

for(i in 1:nf) {

print(paste("working on file",files[i]))

#---------------------------

Parse filename to get date

#---------------------------

timeval <- parse_fname_for_date(files[i], year, month)

hdf <- EosGDOpen(files[i])

if(hdf$hdfid == -1) {

print(paste("Error opening file", files[i]))

crash

}

else

{

data <- EosGDreadfield(hdf, grid, field)

if((length(data) == 1) && (is.na(data)))

print(paste("Error reading data from file", files[i]))

else

{

start[ndims+1] <- i

put.var.ncdf(ncid, mainvar, data, start=start, count=count)

put.var.ncdf(ncid, dimt, timeval, start=i, count=1)

}

EosGDClose(hdf)

}

}

19

close.ncdf(ncid)

}

#===

doallmonths <- function(y0, m0, y1, m1, data_dir, grid, field, units) {

y <- y0

m <- m0

for(i in 1:999999) {

if(((y == y1) && (m > m1)) || (y>y1))

return

dat2nc(data_dir, y, m, grid, field, units)

m <- m + 1

if(m == 13) {

m <- 1

y <- y + 1

}

}

}

#===

utInit()

data_dir <- ’/genesis/data/airs/L3_thunder/thunder/AIRS_Data’

grid <- ’ascending’

#grid <- ’descending’

#field <- ’SurfSkinTemp_A’

#field <- ’SurfSkinTemp_D’

#field <- ’TotH2OVap_A’

field <- ’RelHumid_A’

units <- ’kg’

#--

If invoked with 2 command line arguments, this treats them as year and

month to process and does just that month. Otherwise, it does all

years and months we have.

#--

argv <- commandArgs()

argc <- length(argv)

{

if(argc > 2){

#--

This is for running from the command line with 2 args, year and month

#--

if(argc != 4) {

stop(paste("takes 2 args: year and month to process. # args found:",argc-2))

}

20

year <- argv[3]

month <- argv[4]

print(paste("working on year=",year,"month=",month))

dat2nc(data_dir, year, month, grid, field, units)

}

else

{

y0 <- 2002

m0 <- 9

y1 <- 2005

m1 <- 1

doallmonths(y0, m0, y1, m1, data_dir, grid, field, units)

}

}

21

