Foldout F1 ESSP Step 2 Proposal • ECHO—Earth Change and Hazard Observatory

Figure F1-1. Block diagram of the ECHO Radar Instrument. The RFES, DES, and antenna CPDU are block redundant. The antenna panels degrade gracefully.

Table F1-3: System	performance for ECHO beams.
--------------------	-----------------------------

Parameter	Near	Mid	Far	Requirement
Swath Width (km)	128	121	96	340 total
PRF (Hz)	1352.6	1263.1	1180.4	-
Boresight Ang (deg)	22.15	29.29	34.63	-
Min Look Ang (deg)	18.00	25.89	32.32	-
Max Look Ang (deg)	26.02	32.42	36.78	-
Range to midswath (km)	829	888	952	-
Start Coverage (km)	249	374	493	-
Stop Coverage (km)	377	495	589	-
Ground-Range Resolution (m)	20.5	15.8	13.6	35
Azimuth Resolution (m) (4-look)	27.6	29.6	31.7	35
Minimum σ ^o _{NE} (dB)	-40.2	-38.2	-36.6	-24
Maximum σ ^o NE (dB)	-30.5	-31.8	-33.4	-24
Worst Azimuth Ambiguity (dB)	-23.7	-22.0	-20.0	-20
Worst Range Ambiguity (dB)	-38.0	-25.6	-25.6	-25
Ave. Radiated Power (W)	128.0	119.5	111.7	-
DC Power (W) †		199		††
fData Rate (Mbps)	130	144	126	<175

† Avg DC power value assuming 8.5 minutes of data collection per orbit, including 30% contingency †† See Table G-5 for S/C capability

Science	Scientific Measurement	Instrument Functional	Mission Functional Requirements
Objectives	Requirements	Requirements	
Understand strain changes leading to and following major earthquakes.	Globally distributed measurement of vector deformation rates to 2 mm yr ⁻¹ (single component accuracy), which implies deformation accuracy of 5- 10 mm at 35-100 m resolution over a 5-year mission.	 Accuracy L-band Radar for high coherence. Split-Spectrum for ionospheric correction. Noise equivalent so better than - 24 dB for radar-dark regions. Accessibility 30 minutes of onboard storage for global accessibility within ground-station constraints. Electronic beam steering in range Calibration GPS for baseline knowledge and for orbit control. Mission Duration High reliability for 5-year mission. 	 Vector Measurement Ability to image left and right for vector measurements. Accuracy & Interferometric Viability Orbit maintenance to repeat-tracks to within 250 m for short interferometric baselines (high coherence). Precise orbit determination. Instrument pointing to better than 0.05 deg. 1σ. Frequent observations over a site to average out tropospheric and other noise sources. Mission Duration Sufficient expendables for a 5-year mission duration. High reliability S/C sufficient to enable 5-year mission duration.
Characterize three- dimensional magma movements to predict volcanic eruptions.	Globally distributed monthly measurements of deformation with 5-10 mm accuracy. Frequent mea- surements during eruptions.	As above with no additional drivers	As above plus Accessibility • 8-day repeat orbit for frequent monitoring of eruptions.
Assess the impact	Ability to map vector ice	As above with no additional drivers	As above plus
of ice sheet and gla-	motion for Greenland and		Accuracy & Interferometric Viability
cier system dynam-	Antarctica to 1 m yr ⁻¹ (sin-		• 8-day repeat to avoid temporal decorrelation &
ics on sea level rise	gle component accuracy).		aliasing of fast motion.
and characterize	5-year mission to study		Accessibility
temporal variability.	temporal variability.		• Polar orbit & left/right looking to image to both poles.

Table F1-2: Technical maturity matrix (L-2a)	. All elements of
	SIR-C/SRTM

Hardware Item	Item Description	Maturity	Maturity Rationale
StaLO/Frequency Synthesizer	Crystal oscillator & PLL frequency multipliers		SIR-C, ARTP
Chirp Generator	NCO-based DDS	TRL 7	SIR-C, ARTP
Upconverter/Driver	MMIC-based upconverter and SSPA	TRL 7	SIR-C, ARTP
Receiver	MMIC-based receiver	TRL 7	SIR-C, ARTP
ADC/Buffer/BFPQ/ Formatter	8-bit ADC/buffer with 8:4 BFPQ	TRL 7	SIR-C, ARTP
Radar Control & Timing	I & Timing FPGA-based		SIR-C, ARTP
T/R Modules	MMIC-based transmit and receive amplifiers		SIR-C, SRTM
Antenna Panels	Itenna Panels Microstrip phased array on honeycomb		SeaSat, SIR-A/B/C, SRTM
Antenna Control Electronics	tenna Control Electronics Timing, serial command & telemetry bus		SIR-C, SRTM
Antenna Structure Rigid, deep truss, composite tube with titanium end fitting, low CTE truss elements & thermal tape, bond joints, DOF fittings, snubber system		TRL 7	SeaSat, RadarSat-I/II
Deployment Mechanism	Pyrotechnic latch release, bearing design & lubrication, preload mechanisms, drive motor assembly, synchronization linkage, cable/ spring powered elbow mechanism, outboard panel hinge latch	TRL 9	RadarSat

Table F1-1: Science Traceability Matrix (L-3).

f the ECHO radar electronics have direct heritage from (TRL 9).

Table F2-1	ECHO	instrument	information.
------------	------	------------	--------------

Item	Value/Summary	Units
Sensor type	SAR	N/A
Number of instruments (including redundant units and spares)	1 instrument with built-in redundancy	N/A
Number of channels	1	N/A
Size, meters x meters	13.8 x 2.0 x 0.05	m ³
Mass with contingency, kg and %	569 kg (28%)	kg, %
Power with contingency (nominal, peak, duty cycle, standby), watts and %	Nominal 198 W (30%) @ 8.5% Duty Cycle Peak 1793 W (30%) Standby 50 W (30%)	W, %
Data rate with contingency, kbps and %	175 Mbps (30%) (avg. 8.5 minutes/ orbit)	Mbps, %
Mechanical, electrical, and thermal layouts	(see Figs, technical section)	N/A
Optical layout including field of view (if appropriate)	(see Figs, technical section)	N/A
Ground and on-orbit calibration scheme	Geodetic ground control	N/A
Pointing requirements (knowledge, control, and stability), degrees	Knowledge 0.05 deg Control: 0.05 deg Stability: 0.05/10 s	degrees
Command and control requirements	1 radar command per data take	N/A
Flight software architecture and thousands of lines of software code used. Include new and reuse/retest/ redesigned code., KSLOC. (Use of existing or commercial off the shelf or hybrid software shall be identified)	Instrument on/off sequencing runs on control computer. ~100 lines of code	S/C
Definition of instrument operational modes over all science phases with power and data requirements, watts and kbps	Standby, 50 W, 20 kbs Datatake, 1793 W, 175 Mbps	

Table F2-2: Spacecraft bus features that help simplify the radar design.

Spacecraft bus feature	Impact on radar design		
Accurate positioning	Allows radar commands to be uploaded well in advance of data-take.		
Accurate, stable pointing/ yaw steering	Removes uncertainty in antenna pointing. Simplifies radar timing and control.		
Powerful CPU	Removes need for radar CPU.		
Solid-state recorder (SSR)	Simplifies buffering scheme/interface for science data stream.		
Telemetry handling	Removes need for an additional dedicated radar telemetry processor unit.		
GPS one-second time-ticks	Provides accurate timing reference for radar system on/off configuration.		

Table F2-3: Radar electronics and antenna potential problems, associated risks, and mitigation plans.

Risk Area	Explanation	Likelihood	Consequence	Mitigation Plan
RFES/DES	Unit failure	L	L	Block redundancy for each subsystem
RFES/DES	Schedule slip	М	L/M	Request for pre-phase B risk reduction phase; schedule reserve
T/R modules	T/R module components difficult to find	М	L	Evaluate part availability early to facilitate mods to SIR-C designs
T/R modules, RFES Drivers	Multipaction enabled by HPA output power	L	Н	Evaluate all high-power transmission lines and junctions, modify connectors as on SIR-C
Structure	Structure development schedule lags	L	М	Monitor this major subcontract closely to uncover problems ASAP
T/R module	T/R development schedule lags	L	М	Monitor this major subcontract closely to uncover problems ASAP
Panel	Panel flatness degrades due to large panel size	L	L	Construct panel as symmetrically as practical to minimize thermal distortions
Antenna Structure	Structure does not deploy	L	Н	Pre-launch test of proven deployment system, redundant pyrotechnic cutters

Figure F2-1. ECHO coverage areas for seismic, volcanic, and ice sheet objectives. Data for other natural hazards research can be collected worldwide.

Foldout G2 ESSP Step 2 Proposal • ECHO—Earth Change and Hazard Observatory

