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Abstract

We propose to fully quantify the performance of several state-of-the-art automatic feature identification methods on Martian geological features such as craters and linear features. We also propose to develop from these results a new generation of geologically optimized methods using planetary science expertise, extensive label sets, and new statistical analyses to supplement relevant computer vision and pattern recognition techniques.  Planetary science and statistical expertise will be used to characterize associations among features and the groups of adjacent or superimposed features which can lead to recognition of degraded single features or to geologically significant conclusions, or both.  Examples of such associations include channels or faults dissecting craters, craters embedded or falsely detected in mountainous terrain, and parallel, radial or concentric linear features.  The resulting tools will again be evaluated for scientific use. We will use the Diamond Eye image data mining system, integrated into the Planetary Data System, to exploit and present the resulting feature identifications to the Mars scientific community and for outreach.

Diamond Eye will be integrated with the Mars portion of the Planetary Image Atlas (PIA).  The Atlas is designed to be a single interface, through which a user can search for, display, and download images and other related data for many planetary missions.  Currently, the

Atlas supports Voyager, Mars Global Surveyor and other orbiters and landers. Users of the PIA will be able to employ all of the data mining capabilities of Diamond Eye and access practically all of the Mars images acquired to date.  Features detected by Diamond Eye will be saved in a

publicly accessible database with a possibility of export to a Geographical Information System.

=================================================================

.3.4 Scientific Technical Management Section              [Appendix B, Parts (c)(4), (c)(5), and in-part

      (c)(6)]

  This section is the main body of the proposal and must cover the following topics in the order given, all within the specified page limit (the default limit is 15 pages unless otherwise specified): 

      The objectives and expected significance of the proposed research, especially as related to the

      objectives given in the NRA; 

      The technical approach and methodology to be employed in conducting the proposed research. Include a

      description of any hardware proposed to be built in order to carry out the research, as well as any

      special facilities of the proposing institution(s) and/or capabilities of the proposer(s) that would be

      used for carrying out the work. Notes: (i) see also the Facilities and Equipment section below for the

      description of critical equipment needed for carrying out the proposed research; (ii) see Section 2.3.10

      (iv) for further discussion of costing details needed for proposals that may propose significant

      hardware, software, and/or ground systems development, and, as may be specifically allowed by a

      specific NRA, proposals for flight spacecraft and instruments); 

      The perceived impact of the proposed work to the state of knowledge in the field and, if the proposal is

      offered as a direct successor to an existing NASA award, how the proposed work is expected to build

      on and otherwise extend previous accomplishments; 

      The relevance of the proposed work to past, present, and/or future NASA programs and interests or to

      the specific objectives given in the NRA; 

      A general plan of work, including anticipated key milestones for accomplishments, the management

      structure for the proposal personnel, any substantial collaboration(s) and/or use of consultant(s) that

      is(are) proposed to complete the investigation; and a description of the expected contribution to the

      proposed effort by the PI and each person as identified in one of the additional categories in Section

      1.4.2, regardless of whether or not they derive support from the proposed budget.

===================================================================

The specific goals of the AISR program are to:

Increase the scientific return on research within all OSS science themes by making advanced tools and capabilities available for the acquisition and utilization of science data and information;

Exploit advances in computer science and information technology for the benefit of space science; and

Promote strong collaborations involving the space science community, computer science community, data system engineers and  technologists, academia, and the private sector and technology innovators.

Areas of Interest

Science data analysis and visualization;
Simulations, computational methods, and modeling in support of extracting science from NASA data sets;

Science mining and exploration, including software technology, adaptive techniques, data compression, etc.

Science planning and operations, including innovative concepts and ideas beyond current methods and processes for spacecraft/science operations;

Science data management, storage, and distribution; and

Science data product generation for the benefit of a broader community of scientists.

OSS science theme #3: solar system exploration; goals #1  (understand the nature and history of our solar system, and what makes Earth similar to and different from its planetary neighbors) and #3 (understand the extenal forces , including comet and asteroid impacts, that affect life and the habitability of Earth).
1. Objectives and significance

There is a widespread recognition by Mars planetary scientists of the need to identify large numbers of features such as craters, faults, ridges, and channels, as well as relationships between such features, in order to infer the history of important geological processes on Mars.  Processes of major interest include water floods, wind or water erosion, volcanic lava flows, ash falls, and impact cratering. These processes are essential aspects of reconstructing the geological history of the planet with enough detail to resolve major questions about the history of water on Mars, for example [XXX Baker, Carr].  Resolving such questions will require global analyses of the planetary surface such as [Barlow et al. 1990].  Integrative hypotheses such as newly proposed catastrophic floods [Dohm et al.] make predictions which should be be tested by new global analyses on successively larger image data sets from VO, MOC, MOLA … The scientific community has performed such analyses since the Mariner and Viking missions [Barlow catalog].  Tools used up until now simply assist hand-scanning by knowledgable experts, so that comprehensive data sets take many years to build [Anderson]. This approach is unlikely to scale up successfully to the full variety of geological features relevant to complex hypothesis, nor does it address possible observer bias.   An even more serious problem is that of handling new high-resolution image sets, XXX quantify resolution and feature # increases XXX.  For these reasons it is becoming increasingly important to provide to the scientific community with automated tools which can assist in global analyses on scaled up data sets and complex feature interactions. 

Automated approaches to geological feature identification have not yet gone into production use because they haven’t been validated scientifically.  One goal of this proposal is to produce new tools, which successfully perform such validation for successively more complex classes of Mars terrain. A second goal is to use these validation tools to improve automated feature detection methods so that their domain of scientific validity is substantially increased. A third goal is to make all these tools as well as important datasets created with them both accessible and useful to the scientific community.  The significance of the proposed work is that we will greatly increase the scientific return from orbital missions to Mars, and eventually landed ones, by greatly improving the derivation of geomorphology from global image and elevation datasets.  XXXtanya numbers here too. XXX  In addition we will demonstrate a new way for planetary scientists and computational experts to interact by way of statistical validation, and we will demonstrate several new technologies for distributed scientific pattern recognition which may have other applications in computational science.

2. Technical approach

The classical approach to detect geological features involved the recognition and definition by planetary scientists of their need to identify large numbers of objects such as craters for surface dating studies in large volumes of image data; this problem definition was followed by computational research in applying and adapting standard pattern recognition methods to the identification of such objects; finally planetary scientists could qualitatively evaluate the algorithm performance.  In this paradigm, the accumulation of successively higher volume data sets from robotic missions required either heroic efforts at human examination of imagery for geological content [cite clickworkers-tanya], or new automation tools, or both. Examples of the first approach include Barlow’s crater catalog [cite], Anderson’s fault catalog [cite], and systematic mapping of a wider variety of feature types and terrains [usgs?].

Automated approaches have not yet gone into production use because they haven’t been validated scientifically.  We suggest the current paradigm has provided an excellent starting place but needs a further elaboration to reach full potential.  In contrast to the classical approach, our approach will build on a continual two-way interaction of planetary science and pattern recognition, mediated by the common language of statistical methods, which are meaningful to experts in both domains. As a side benefit, we expect to be able to approach the detection of a wider variety of geological features and relationships than has hitherto been attempted.

Building on the long history of pattern recognition for stereotyped features in two-dimensional imagery, we propose to specialize the best available methods to the particular case of scientifically relevant geological features on Mars, and to build tools aimed at scientific use in that domain.  Our proposed work has the following elements, detailed below.  (1) Beginning with the best-known detectors for individual features such as craters and faults we will (2) use statistical methods along with Mars data sets (Martian terrain simulation results, Gaskell, TanyaXXX) and Mars expert knowledge to fully understand the limits of the scientific applicability of such detectors as a function of terrain complexity and other measurable parameters.  (3) We will then engineer more advanced detectors, tailored to Martian geological features, which achieve further novel capabilities.  This will be achieved by (3a) optimized combination of existing algorithms and (3b) creation of compound detectors for feature groups of geological significance. (4) We will make validated feature detectors, validation functions, and resulting datasets accessible to the scientific community through the Planetary Data System.

2.1 State of the art geological feature detectors

2.1.1 State of the knowledge in the field

Outline:

1. hough transforms since 1960; likewise template matching?, find the original Hough report

2. ANN’s for OCR 

3. commercial patt rec: OCR, face rec, fprint ID

4. DeCoste future improvements – Shows that to obtain the best possible performance of the algorithms, prior knowledge about invariances of a classification problem should be included into the training procedure. Analysis of the performance for several algorithms are applied to a digit identification problem and venusian volcano ID.

5. C. Olson - describes the general method for solving problem of finding the best algorithm for feature matching and model extraction. Two approaches are incorporated – generate-and-test and Hough transform – model is extracted from or fit to data.. Tested on edge/circle detection

6. T. Lindeberg – address the problem of automatic scale selection for the image processing (connect that SCTM needs the Pyramid representation, which means scale); when processing unknown measurement data by automatic methods the notion of the scale is the KEY problem for all known algorithm. Propose the systematic methodology to select the scale automatically for further image analysis; problem methodology were applied to blob detection, junction detection, edge detection, ridge detection for real and artificial environments.
7. A. Johnson – idea is to use craters detection for solving the problem of absolute position estimation around asteroids

8. Japanese group – Examined the crater detection algorithms for planetary images Clementine LDIM), used combinational Hough transform and genetic algorithms. Results on the MDIM were summarized and compared for both algorithms in terms of true/false solutions for selected image. They do not report the efficiency of the algorithms  
9. Crater count power laws, Barlow catalog, Anderson catalog, bring and read Gaskell’s reference of 1992

  
 In the second approach, pattern recognition algorithms taken from other applications such as optical character recognition, particle physics, and medical imaging were applied to the problems identified in planetary science.  The basics examples include circles/ellipses, lines, edges, ridges, junctions and image templates. For examples lines/segments could be detected by Hough Transform (HT) [cite]. This led to development of generalized HT, which were used to detect craters in [site 1,2,3]. A second general approach began with template matching. Image pixel’s arrays were rotated/translated or otherwise transformed to match pieces of an image.  This establishes an image-based paradigm, which may be extended to matched spatial filters, principal components methods and artificial neural networks [Brunelli and Poggio].  

2.1.2 Our starting set of detectors

10. volcano detection- MLJ article burl et al

11. Burl system and alg

             a. [figure]

12. decoste SVM’s

1. best-in-world single feature algs

a. feature types: craters, linear features, … 

i.  [figure: uml diagram]

ii. isa: union of algs; part of: feature group algs

b. burl CSTM – trainable, can be for craters + compact objects

c. SVM’s decoste – trainable, can be for craters + compact objects

d. cheng – craters

e. linear detectors: faults, 

i. hough, edge detection , …

f. curvilinear

i. kalman filter [ref]

f. texture detectors – mountains, complex crater walls, …

Detectors may be divided into trainable vs. non-trainable; we will use both in maximally effective combinations.  A hierarchy of relevant feature types is shown in XXX figure 2.

XXX figure 2:  UML diagram for feature types for the planetary terrain.
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Our primitive feature detectors stem from a series of developments performed at JPL.  Venusian volcanos were identified from Magellan radar data in [Burl et al] which provides ROC curves for several related detectors compared to several hand-labelings.  A subset of the data was deposited with the UC Irvine machine learning benchmarks repository. The Continuously Scalable Template Matching (CSTM) algorithm was tested on selected lunar crater images as reported in [Burl et al. 2001], complete with ROC curve.   This algorithm is currently used as the backend recognizer for the Diamond Eye (DE) image mining system. It has also been used to detect sand dunes and lava cones [XXX]. 

Spatially invariant versions of current Support Vector Machine (SVM) algorithms were reported in [Decoste] where they were demonstrated to improve the world record on the MNIST database of 10,000 digit recognition problems.  They were also shown to improve the previous best ROC curves for the Magellan volcanoes.  Speedup techniques, which make SVM competitive with trained feed forward neural nets in recognition speed are discussed in [XXX]. For these reasons we will make our best invariant SVM algorithm (ISVM), too, available as a DE service and explore its use as a trainable geological feature identifier.  Both CSTM and ISVM algorithms can, at increased expense, be made to check for model instances at a variety of orientations and sun angles in cases where those parameters are not known or predictable.  This is relevant in building detectors extended objects such as for faults or channels whose orientation with respect to illumination source is not fully known ahead of detection.

A separate tradition of crater-specific feature recognizers has been developed for spacecraft navigation at JPL [XXX Olson, Johnson] culminating so far in the elliptical crater detectors of Cheng which use XXXchengXXX a combination of edge detection and generalized hough transforms to achieve good purity at medium efficiency (an operating range relevant to navigation) for a wide variety of solar system craters.

2.2 Statistical Validation

2. Statistical analysis of feature detector performance

- cuts using likelihoods are fundamental: find “best explanation” of each pixel

· measure efficiency, purity as a function of feature size and terrain complexity

· [figs: jf, mf & efficiency plot vs crater size – tgv result here]

· [fig: resolution plot for crater-crater distance]

· our real statistical analysis require a strong MC

· jpl terrain server + our modifications 

·  [fig: eff/purity roc result for gaskell sim terrain]

- validation for particular scientific goals, such as surface dating or cataloging

study efficiency as a function of complexity of the terrain .. TELL MORE

prior work:

13. Statistical approach to the problem: Barlow, Burl, Vinogradova

For any feature identification system there are important quantitative measures of success.   These include the probability of finding a target that is really there (detection efficiency, or “recall” in information retrieval), and the probability that an output detection actually does correspond to a real target (detection purity, or “precision”).  If detection includes parametric outputs like position or scale, the accuracies of these outputs also can be measured.   In that case, one may need to set a numerical criterion for sufficient accuracy for a “successful” detection before reporting either efficiency or purity [ cite Vinogradova, “statistical approach to data analysis”]  If sets of detected features are not the final output, but are inputs to further processing such as surface age determination from crater counts, then the relevant metric for algorithm success is altered accordingly.  Typically a detector is also parameterized by likelihood cutoffs and other parameters that affect the tradeoff between detection efficiency and purity; for each value of allowed impurity (1 - purity, also known as the false alarm rate) there is some optimal parameter set with maximal efficiency and we can plot that maximal efficiency as a function of allowed impurity.  This is the well-known Receiver Operator Characteristic or ROC curve, which shows the tradeoff between efficiency and purity.  An example is shown in XXX figure 1. 

For example one can think of individual feature detectors as smart “hooks” that can seize their targets in the image with some efficiency and false alarm rate as summarized in an ROC curve.  Each detector is typically equipped with a crucial numerical readout: some measure of the likelihood of the detected match.  If we sweep through possible values of a cutoff threshold for this likelihood, eliminating hooks in the order of increasing likelihood, we can make a series of measurements of purity and efficiency to be plotted against one another in the ROC curve such as the one in figure 1.  The ROC curve has one further side-benefit, which we have not seen done in prior work but will use here: it allows one to transform the algorithm’s estimate of likelihood of correct feature identification into a better, application-specific estimate by learning the function mapping reported likelihoods to measured purity values over some set of images.

XXXfigure 3

To measure efficiency and purity, and to train trainable feature detection algorithms, we require adequate amounts of labeled image data.  The most valuable such data is expert-labeled imagery of Mars, available to us in the form of Viking Orbiter imagery with co-referenced feature label catalogs including Barlow’s catalog of 42,000 Mars craters of size  XXX >4km [cite], and Anderson’s catalog of XXX 25,000 linear features on Mars including faults [cite].  Both catalogs provide important sub-categorizations of objects which may be useful for training specialized models.   To characterize background terrain and distractor features we will use systematic Mars maps of a wide variety of feature types and terrains [usgs map?].

XXXtanya insert: discussion of references by Barlow, Burl and Vinogradova.

A second, very important source of training and validation data is Monte Carlo simulations of synthetic Mars terrain with suitable geological features.  Although simulations almost always have some systematic and important differences from real data, they provide a volume of labeled data that is inexpensive, inexhaustible, correctly labeled, and can be similar enough to real data that trainable algorithms can be retrained to real data once they are functioning on synthetic data.  We will use an updated version of R. Gaskell’s terrain simulator [G93, G01], which can support our goals as an analytical and predictive tool.  The Martian terrain simulator has been used for rover navigability studies. XXXtanya add the detailed description…XXXtanya.  

Terrain complexity may be quantified in various ways.  These include rock unit identity, texture, density of feature labels and/or feature detections.  Martian Gazetteer classes and roughness measures [aharonson, zuber, Slopes, correlations and physical..] provide further possibilities for quantifying terrain complexity. XXX Tanya - add figure, gazetteer, GaskellXXX 

Final figures of merit for various feature detectors in various situations will be computed for several different scientific goals.  For cataloging, efficiency and purity are appropriate measures. However, each automatically cataloged feature might store information related to probability of detection, such as algorithm of detection and related (or “general”) likelihood value.

(XXXindication of the predictable circumstances under which each algorithm is acceptable as well as a record of the statistical validation procedure’s re-estimate of feature likelihoodXXX) 

 For surface dating, a critical quantity is the detection efficiency (at some fixed, fairly high purity) as a function of crater size (usually fit to a power law). It is also a function of some predefined  measure of terrain complexity such as current Mars geological unit classification in [usgs map] or visual texture computed at relevant scales. As an example two plots on the Fig.XXX show simulated terrains of different complexity, as defined by crater density. (XXX Tanya – figure).

From this efficiency and conventional statistics it is possible to estimate actual crater densities given detection density, and the expected error in actual crater densities, which can then be transformed to relative ages and uncertainties therein [Barlow].

[image: image2.jpg]
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2.3 Engineer Advanced Detectors

3. Improved feature detection

a. Improved feature detection through algorithm combination

i. Multiple algs have different properties

1. [Figure: cheng vs cstm + efficiency]

ii. Union (at high thresh); Intersect (at low thresh); committee machines [Maclin & Opitz]; mixture of experts

1. [quote efficiency for union, intersection combs of 2 crater detectors[

iii. Use one alg to focus attention (if low purity) or find training samples (if high purity) for another.

b. Improved feature detection through feature groups 

i. Destructive interference: one feature obscures another

1. Local convex combinations of templates?  Switching as a special case.

2. Likelihood scores increase for explained-away mismatches

a. boundary penalty

3. empirical param-setting based on performance

ii. ( Constructive interference: one feature leads to another )

1. penalize craters in mountains, complex crater walls, other texture

iii. True feature groups – chains, parallelism, radial patterns, …

1. [figure: light wall/dark wall crater ID in memn? – tgv expt.]

2. Feature pair dictionary???
If we think of individual geological feature detectors as smart “hooks” that can attach to their targets in the image with some efficiency and false alarm rate as summarized in an ROC curve, then we can engineer higher-level image understanding algorithms based on the use of many such hooks or detectors.  Each detector is typically equipped with a crucial numerical readout: some measure of the likelihood of the detected match, which answers the question,  “How strongly is the detector attached to its preferred patch of image?”  We want to provide (at least) the likeliest explanation of each image in terms of known high-probability geological processes and their characteristic geomorphologies.

This likelihood readout of each detector suggests a series of engineering questions.  What is the best threshold likelihood to use across a set of images for a given scientific purpose?  If two detectors for the same or different type of feature hook onto overlapping patches of the image, should the stronger connection suppress the weaker one?  If not, should their individual likelihoods of match be altered somehow prior to likelihood thresholding?  Can several smaller hooks, such as detectors for parts of a crater or fault, be combined into one super-accurate larger-scale feature detector?  These “likelihood engineering” questions will be answered in the proposed work by recourse to measured statistics of algorithm performance on both real and simulated labeled image datasets.  The questions will be posed within a conventional maximum-likelihood pattern recognition conceptual framework, tailored to this domain by geological expertise.

Our Mars-centric approaches to engineering advanced feature detectors can be grouped as follows.  First, we will use Mars datasets and statistical validation thereon, optimally to combine our existing detectors for individual feature types into new detectors for the same feature type.  Second, we will use expert Mars knowledge, formalized into entity-relationship diagrams such as XXX figure 2,  to combine detectors for a variety of different feature types into group-level feature detectors.  Examples of the latter include detecting a single crater from its sunlit and shadowed inner crater walls, or detecting a set of parallel or radial linear features which may be indicative of stress fields.

To begin the first approach (combination of different detectors for homogeneous feature types), the Burl and Cheng crater feature detectors (one trainable, one hand-coded for elliptical features for navigation) can each be used with a low likelihood threshold and their results intersected, or with a high threshold and their results unioned. XXXtanya see fig XXXtanya  More generally they can provide input to a committee machine [Maclin and Optiz XXXEric] or to a mixture-of-experts neural network which is trained to weight their votes differently for different image patches [Jordan and Jacobs XXXEric].  We will perform these experiments.  If the ROC curves for two algorithms cross each other in some experiment, so that one algorithm is better at low purity and the other is better at high efficiency, then an asymmetric combination will be tried: use a low-purity detector to find candidates for the high-purity one, or use the high-purity detector to provide local training examples to the low-purity one.  The same approaches will be applied to other combinations of homogeneous feature detectors such as differently-trained CSTM’s or SVM’s.

To combine several features of different types, the likelihood engineering approach again provides a technical route to validatable improvements.  For example we have observed anomalies in CSTM performance whereby spurious small craters are preferentially found in the complex walls of large craters.  Such large craters can be reliably detected if by no other means than the fact that they have already been cataloged.  So the likelihood of small craters in the vicinity of a large crater’s rim could be discounted, by an amount which can be directly observed over a sample image set using likelihood reestimation as described above.  Then likelihood thresholding will leave only the likeliest rim-embedded crater detections as outputs.

In this way we will discover the rules by which one feature “should” suppress another.  Related experiments will look for feature groups.  For example a crater may be defined in terms of features which detect its parts such a sunlight rim interior, a shadowed rim interior, a central bowl, and an ejecta blanket.  Some of these parts may be missing or detected with relatively low likelihood, while still allowing detection to proceed at the group.   That is particularly true of the missing features are in fact obscured by some other detected feature such as a channel or smooth plain deposit.   Empirical rules of likelihood combination will be learned from test sets to produce robust feature group detectors.   The combined elementary features can include a trainable template for the entire feature group in cases where that makes sense (yes for craters, no for sinuous channels).

Because of the optimized logic of combination, a overall group-level detector can be far more robust and hence have higher efficiency at given purity than a single feature detector would be.  A major goal in designing the “soft logic” of feature groups is to find the best explanation of each pixel; another is to arrange that the boundaries between different types of explanations are believable, e.g. low total length or high similarity explanations between adjacent pixels.  Relevant parameters, such as a likelihood reward term for the same model to explain adjacent pixels [Turmon XXX], would have their magnitudes trained by likelihood reestimation based on training set performance followed by test-set validation.

A simple mathematical comparison between single-feature template matching and group-level feature detection may be revealing.  Following [Brunelli and Poggio] we may hypothesize that a spatial signal such as an image patch is composed of a model image with zero-mean stationary noise added:  

(1) I(x) = phi(x-x0) + lambda(x).  XXX

The authors provide conditions under which minimizing the correlation between image and template provides an “optimal” linear filtering criterion for finding the unknown offset x0.  They also provide nonlinear generalizations of this treatment.  Feature groups may be modeled as a more complex, somewhat nonlinear model of image formation.  Suppose there are a number of different feature types indexed by a, each with a number of different instances indexed by i.  We seek to explain each pixel in the image by a convex combination of templates, preferably with extreme 0/1 coefficients (hence a unique template instance for each pixel), but with the bias that neighboring pixels should belong to the same template instance where possible.  This bias is achieved by means of a Markov Random Field or Ising Model formulation, as in the energy function below, in which the coefficients J, h, and K are related to feature-type occurrence and co-occurrence probabilities.

(2) I(x) = \sum_{ia} 

(3) E = - \sum_{ia}_{xs} J_{ab} (n_{ia}(x,s)-1/2)(n_{jb}(x,s)-1/2)

 - \sum_{ia}_{xs} k_{a} n_{ia}(x,s)

XXX (2,3) eric equations here?
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We propose a multistep optimization in which first the template-matching approach of (1) is applied at low threshold to detect a rich set of candidate instances of each feature type, and then subsequent likelihood engineering is used to select heuristically the best combination of pixel-feature associations according to (2) an (3).  Ultimately, full nonlinear optimization methods can be applied as well but first the model parameters such as J_{ab} and k_a need to be inferred.  This model is a generalization of [Turmon].

Some related methods for learning and recognizing feature groups have been developed in neural network pattern recognition, particularly the use of hybrid neural/symbolic methods for incorporating domain knowledge into part/whole object models.  We have expertise in this area and plan to use it, once the more incremental and empirical approach outlined above shows which features may be productively combined.

One of the most important advantages of synthetic data, which we will exploit in training heterogenous feature groups, is its ability to generate large numbers of specified feature coincidences such as fault-dissected craters.

XXXtanya figure: light wall/ dark wall/ crater ( compound crater detection, efficiency

Other relevant examples of feature groups include grouping channel segments to channels, faults to radial fault sets, ridges to concentric ridge sets, and so on.  We will elaborate the UML diagram of figure 2, in a collaboration between planetary scientists and computer scientists, to provide an authoritative representation of the high-frequency feature groups of importance to geomophology.

Finally, spatial relationships between features, which often give essential evidence about the relative age of the related features, will be discovered by training feature group models for superimpositions of one feature on another such as a fault dissecting a crater or a lava flow captured by a preexisting graben or water channel.  The most important such relationships will also be formally engineered in an entity-relationship diagram using UML.

In sum, we propose a postprocessing and Mars-centric approach to improving geological feature detectors so that they can be demonstrably validated for scientific use in successively more complex background terrains.  Discovered rules of feature combination could in the future be hard-coded into faster or yet more accurate single-feature detection algorithms, but that is beyond the scope of the present work. 

2.4 PDS

4. PDS , connection ... TELL MORE

a. Anton system description [fig: and diagram]

i. Cf DE system diagram

ii. Postgres object/relational db

b. Sci goal: find usable efficiency and scaling law for a succession of more complex terrain and object types

c. Deliverables:

i. Validated representative feature set of known efficiency

ii. Web-accessible geofeature identification and validation tools

5. Combine and capture in software the relevant expertise in planetary science, pattern recognition, machine learning, statistical methods.

XXX Find burl architecture paper

XXXAnton stolen from abstract:

Diamond Eye will be integrated with the mars portion of the Planetary Image Atlas (PIA).  The Atlas is designed to be a single interface, through which a user can search for, display, and download images and other ancillary data for many planetary missions.  Currently, the

Atlas supports Voyager, Mars Global Surveyor and other orbiters and landers. Users of the PIA will be able to employ all of the data mining capabilities of Diamond Eye and access practically all of the Mars images acquired to date.  Features detected by the Diamond Eye will be saved in a

publicly accessible database with a possibility of export to a Geographical Information System.

DE permits such integration by virtue of its modular system architecture.  This includes an expandable hierarchy of algorithm objects wrapped in uniform Java interfaces; JRMI communication between algorithm objects for distributed computing; a uniform data source layer which can specialize equally well to data objects such as images in files or in databases such as a pure object database; a Java Graphical User Interface (GUI) which supports password-protected remote access; and a parallel computing back end using MPI for production operations on large sets of images.

3. Perceived impact

The field of scientific datamining is a mainstream theme in knowledge discovery and datamining [XXX KDD cites], and it is receiving increased attention from practicing scientists as real and computational datasets explode in size.  We have proposed a novel knowledge-intensive “postprocessing” strategy to evolving scientific datamining algorithms towards validatable production use.  The strategy could be applied to many other problems as well, in planetary science outside of Mars (including Earth science) and in other scientific fields.  If successful on Mars data, it will have high visibility resulting in quick adoption in other areas where it is likely to succeed.

Impact for Mars science will also be high, since higher resolution imagery from MOC, MOLA and forthcoming Mars orbital missions will allow for a vast expansion of existing catalogs of features such as craters and faults, if only feature-identification can be performed on much larger image sets.  Principal improvements will be in lowering the minimal feature size, and increasing the variety and complexity of features and relationships cataloged.

The work proposed is not a direct continuation of any AISRP or NASA award, since the Mars-centric likelihood engineering experiments proposed require a new combination of expertise from many disciplines.  However, it draws from previous NASA supported research and development in a number of key areas.  The Diamond Eye image mining middleware system, and its CSTM trainable feature detector, are currently funded by AISRP.  The proposed work would not be possible without this foundation.  The Planetary Image Atlas is funded by XXX.  These existing projects will have much amplified impact on planetary science though the proposed new work.

4. Relevance

The relevance of the proposed work for NASA relates to the goals of the AISR program.  We will significantly increase the scientific returns from orbital missions to Mars, and eventually landed ones, by greatly improving the derivation of geomorphology from global image and elevation datasets.  XXXtanya numbers here too. XXX  The proposed work will exploit advances in computer science and information technology, in the form of both fixed and trainable feature detectors, hybrid neural/symbolic methods for incorporating domain knowledge into part/whole object models, and advanced distributed computing for dissemination of relevant tools, services, and curated data products.  And finally it will bring together experts in planetary science, statistical data analysis, Monte Carlo simulation, machine learning, and computer vision into a unique and truly collaborative synthesis aimed squarely at the essential problems of large-scale geomorphology on Mars.

5. Plan of work

Milestones

Year 1. –Prepare test data sets for systematic evaluation using craters subpopulation defined 

               By morphology, size, and background terrain. Data sets will come from Mars imagery                     

               including Viking orbiter and MGS (MOC, MOLA) 

             -To evaluate and characterize statistical efficiency of 2 (why 2?) existing algorithms

              For crater detection as a function of (geological)background.

· Use MC terrain simulator for evaluating efficiency (superposition of feature images on background images of varying complexity) 

               - Out of two existing algorithms (CSTM and navigation alg.) find the best 

                  Combination technique; evaluate and characterize effic.

· Improving the algorithms.., 

· Improving the software.. Integrating with PDS

· Preparing the paper for reporting results


- new compact features trained using CSTM

· Half craters, filled craters, center peaked craters, small craters

· Dunes

· Mesas 

Year 2.

· Scientific validation of compact feature detectors as a function of background terrain complexity

· Begin developing new linear geological feature detector

1. faults

2. sinuous valleys (vallis/MANGALA VALLES.albedo)

· Prepare test data sets with Martian scarps, ridges and faults using feature subpopulation defined by background terrain and distracter objects such as

Mountains, craters

· Develop feature group detector:

                       1.Chain of craters = Catena

                        2.Dune field

                        3.Sulcus – subparallel ridges, texture detector

                        4.Plateau – flat background +combination of the filled craters

                           (example /Planitia/Amazonis Planitia.albedo)

                        5.Parallel linear structure including faults/grabens

                          Sets of parallel faults (give the examples) 

                         6. Radial and concentric linear structures

                         7. Structural control (lava flow channels, or basins)

                              by faults    

Year 3.

· Scientific validation of feature group detector

· all tools made accessible through DE/PIA integration

· reference dataset of detected geological features disseminated through PIA

XXX need schedule in  Project

Contributions

Tatiana Vinogradova, Ph.D., will be responsible for supervising and coordinating all aspects of the project.  She will ensure that milestones are met on time, including deliverables, and will be responsible for budgets and reporting.  She will also provide the statistical analysis deliverables based on her experience with statistical analysis and Monte Carlo simulations in major international particle physics experiments; conduct the likelihood engineering experiments; and create and integrate new compound group-level feature detectors into the Diamond Eye code base.

Anton Ivanov will integrate Diamond Eye middeware into the Mars portion of the Planetary Image Atlas, including the database, computational backend, and GUI elements.  He will provide planetary science expertise to the likelihood engineering experiments.

Eric Mjolsness will provide expert advice on statistical models for single features and group level feature detectors, as well as software engineering for geological feature recognition.  He will also provide mathematical formulations of novel algorithms such as those of equations (1-3), and preliminary experiments.

Yang Cheng will provide an elliptical crater detector, developed for JPL small body navigation tasks, and expertise in optimizing its performance for the present context.  He will also provide linear and curvilinear feature detectors based on edge detection, generalized Hough Transforms, and other current practices in the JPL Machine Vision Group.  He will provide Java wrappers for these detectors comforming to Diamond Eye algorithm objects.

Dennis Decoste will provide state of the art Support Vector Machine and related kernalized trainable algorithms and will apply and adapt them to the relevant Mars geological feature datasets.

Robert Anderson will provide expert advice on the use of his catalog of 24,000 XXX linear features including faults, grabens, and wrinkle ridges.  He will also provide expert planetary science advice, with Ivanov, for the likelihood engineering experiments.

Michael Burl will provide occasional consulting and advice as needed on the use and programming of Diamond Eye image mining system and the CSTM trainable feature identification algorithm.

Rough Budget:

$200K/yr = 1.0FTE .  Vinogradova: 0.5 FTE.  Ivanov: 0.2 – 0.25 FTE.  Chang, Mjolsness, Decoste: 0.08 – 0.1 FTE each.
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