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Summary of Activities and Anticipated Results:

We will modify and use software tools that have been developed at JPL to simulate growth,  development, and differentiation of cells in growing plants, with particular emphasis on the Arabidopsis shoot apical meristem. Meristems are the source of nearly all human food, fiber, and cellulose (including paper and rayon) and of substantial quantities of chemicals, pharmaceuticals, oils, and waxes.  Improved understanding of relevant developmental processes are crucial to several NASA goals, including space farming, bioengineering, food processing and preparation, biomolecular sensors, and life detection and origin of life studies.  Attainment of each of these goals requires a fundamental understanding of the cellular signal transduction processes involved in tissue growth and development.  Specifically, we will add and apply models for cell division and differentiation to existing software, and fit models to observed data (published or other in-house available experimental; no “wet-lab” experiments are specifically included in this proposal). These models will be based on signal transduction mechanisms that occur during development, and will be implemented using (1) the Cellerator platform for automatic equation generation and (2) the Neuroect genetic regulatory network simulation platform. Cellerator has been developed at JPL for automatic model generation in the description of dynamic regulatory networks.  Cellerator facilitates the description of complex networks and interactions by automatically generating the hundreds to thousands of biochemical and/or differential equations that previously had to be coded manually by hand. In addition, an important aspect of Cellerator operation is explicit output description during model generation allowing intervention and modification of the model “on the go.”  This leads to both a more flexible model description and a straightforward error correction mechanism.  Neuroect is a neural network based genetic regulatory network simulator that uses machine learning algorithms to fit parameters in a gene expression circuit model to experimental data (e.g., microarray measurements).  Neuroect combines descriptions of primitive biological “objects” such as cells or nuclei by their internal state, given as a vector of nonnegative quantities that we may interpret as concentrations of important gene products with an efficiently interpreted grammar for describing developmental mechanisms. We will modify and utilize Cellerator and Neuroect to develop interactive models of Arabidopsis shoot apical meristem growth. These models can then be used to identify, focus and design pathways for specific wet-lab research projects, with this program as a whole serving as a seed for potential future investigations. 
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Narrative:

Genetic Regulatory Networks in Meristem Development

Introduction 
We will modify and use existing software tools that have been developed at JPL to simulate developmental models of tissue growth in plants, with particular emphasis on the Arabidopsis shoot apical meristem. Specifically, we will add and apply models for cell division and differentiation. These models will be based on signal transduction mechanisms that occur during development, and will be implemented using (1) the Cellerator platform for automatic equation generation and (2) the Neuroect genetic regulatory network simulation platform.  

Signal Transduction Models

The rapid growth of information about intracellular signal transduction and genetic networks has led to the view of regulatory biomolecular circuits as highly structured multi-component systems evolved to perform optimally in very uncertain environments.  This emergent complexity of biochemical regulation necessitates the development of new tools for analysis, especially computer assisted mathematical models.  Computer modeling has proved to be of crucial importance in the analysis of genomic DNA sequences and molecular dynamics simulations and is likely to become an indispensable tool in biochemical and genetic research.  Several platforms exist that perform complex simulations of various aspects of cellular signaling and genetic regulatory networks.  Despite their promise, these new modeling environments have not been widely utilized in the biological research community, possibly because of the relative inaccessibility of the modeling interface. Instead of cartoon representations of signaling pathways, in which activation can be represented by an arrow connecting two molecular species, users are often asked to write specific differential equations or choose among different modeling approximations. It is not uncommon to find multi-molecular complexes of modifiable proteins in which the number of states increases exponentially with the number of molecules or classes of molecules.  Even for fairly modest biomolecular circuits this involves explicitly writing dozens to hundreds of differential equations, a job that can be highly error prone, even for an experienced modeler.  The Cellerator platform (Shapiro et al, 2001) has been developed at JPL for automatic model generation in the description of dynamic regulatory networks. In addition to being more accessible to a wider research community, Cellerator facilitates the description of complex networks and interactions. An important aspect of Cellerator operation is explicit output description during model generation allowing intervention and modification of the model “on the go.”  This leads to both a more flexible model description and a straightforward error correction mechanism. Cellerator input is specified via a Mathematica interface. We will modify and utilize Cellerator to develop interactive models of Arabidopsis shoot apical meristem growth. 

Meristem Signal Transduction Models

Shoots and their attendant structures such as leaves and flowers form from a group of stem cells at the growing tip of the shoot, called the shoot apical meristem (SAM), which forms during embryogenesis and remains throughout the growing life of the plant (see figure 1).  Cells depart from the meristem and differentiate into structures beneath the SAM.  In Arabidopsis the SAM is hemispherical with a radius of ≈30 to ≈40 microns and contains cells ≈5 microns in diameter.  The SAM is generally divided cytologically into three zones: a central zone (CZ) at the apex of the hemisphere; a peripheral zone (PZ) surrounding the CZ; and a Rib zone of larger cells beneath the apex.  Cell division occurs at a high rate in both the PZ and Rib zones, but is less frequent in the CZ.  Cell division in the Rib zone pushes the SAM upwards leaving differentiated cells beneath, while cell division in the PZ and CZ maintain the meristem itself. The epidermal (L1) and 
[image: image40..pict]
Figure 1. Confocal microscopic view of the Arabidopsis thaliana SAM, stained to show cell nuclei. (A) The floral meristem (FM) arises on the flank of the roughly hemispherical SAM.  (B) The peripheral (PZ), central (CZ) and Rib zones.  (C) Cells divide anticlinally in the surface layers.  Scale bar: 50 microns. After Meyerowitz (1997) 
[image: image1.png]
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subepidermal (L2) cell layers are characterized by anticlinal divisions (i.e., the cell walls are transverse to the SAM border) and remain clonally distinct from one another; interior (corpus) cells divide more or less irregularly.  The complete set of signaling pathways that control the differentiation process has not yet been worked out.  It is believed that the outer cells express a protein CLV3 that conveys an inhibitory cell proliferation signal to receptors (CLV1) that are expressed in deeper layers, while the deep layers send an unidentified positive signal back to the outer layers (see figure 2).

Cell cycle control Models

A plausible model of the meristem growth would need to describe the cell division cycle to some extent (Taiz and Zeiger, 1998; Lewin 2000).  This cycle is traditionally divided into several phases (see figure 3).  The cell division cycle is probably driven by mitotic oscillations.  The cellular division mechanism undergoes “checkpoints” at the beginning of each phase to “assess” whether or not the appropriate proteins have been produced in the appropriate proportions. It is widely believed that the critical chemicals for passing the G1 and G2 checkpoints are SPF (S-phase promoting factor) and MPF (M-phase promoting factors). Each of these proteins is a heterodimer (a bound pair of different protein molecules), composed of one cyclin and one cyclin dependent kinase (cdk). Many of the relevant proteins have been identified in yeast. The corresponding mechanisms in Arabidopsis have not yet been elucidated but it is anticipated that with the recent complete sequencing of the Arabidopsis genome candidate circuits will be elucidated soon. 
The cell growth simulation model components of Cellerator represent tissue as a graph structure where each cell is represented by a single (point) node and cell-cell interactions are represented by graph edges.  Each node has a vector of molecular concentrations associated with it corresponding to all of the proteins of interest in that cell.  Each edge in the graph has a potential energy function associated with it described by 


[image: image3.wmf]
where 
[image: image4.wmf] is the distance between cells i and j; 
[image: image5.wmf] is the "equilibrium" distance between cells which is determined by concentration of user-specified proteins. In the simplest model a cell divides when it grows "too big" in some sense, i.e., certain protein concentrations reach threshold values.  When a cell divides a new node is added to the graph with the same properties as the parent node but at a location specified by a small random offset.  After each integration step the potential is minimized by a gradient descent to ensure that cell centers move to the correct location as the cell size grows.  Cell growth and division is current described by a three-variable oscillator based on the Brusselator.   We will modify this model to incorporate progressively more realistic models of the cell cycle.

Goldbeter Minimal Model. A minimal growth model for the mitototic cascade has been proposed by Goldbeter (1991) that assumes that cyclin-B (denoted 
[image: image6.wmf]) is synthesized at a constant rate and activates cdc-25 kinase. The activated cdc-25 kinase in turn activates cdc2 kinase, and the activated cdc-2 kinase is inactivated by an additional kinase called wee1.  The cdc-2 kinases also activate a cyclin protease (denoted 
[image: image7.wmf]). The model is described by the three-variable system 



[image: image8.wmf]
The concentrations of cdc-25 and wee-1 are described by Michaelis-Menten kinetics and are therefore embedded in the differential equations at their steady state (analytic) concentrations rather than being described by separate equations.

Checkpoint Models. More sophisticated models describe each of the checkpoints (Novak and Tyson 1993; Tyson et al, 1995).  DNA synthesis appears to be triggered by interactions between a cyclin and a cdk such as cdc-28 (cyclin dependent kinase) in yeast.  Transcription of these proteins is controlled by SBF and MBF.  As activated cyclin accumulates they activate their own transcription factor in a positive feedback loop.  In the Tyson G1-checkpoint model the concentrations of the cyclin (denoted 
[image: image9.wmf]), and active SBF (denoted 
[image: image10.wmf]) are given by
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(1)

where 
[image: image13.wmf] is the concentration of a starter kinase and 
[image: image14.wmf] is the concentration of a phosphatase that degrades SBF. As the cell grows, the concentration of the starter kinase grows, eventually surpassing a critical threshold (via a saddle-node bifurcation in the above system of differential equations) causing the system to jump from a quiescent to an active steady state at which production of the cyclin becomes high, leading to the rapid production of SBF. 

The G2 checkpoint is described by adding a second cyclin (denoted by 
[image: image15.wmf]) with a transcription factor (denoted by 
[image: image16.wmf]).  Production of the CLNB is described by



[image: image17.wmf]
while activation of the transcription factor MCM1 is described by the equation


[image: image18.wmf]     (2) 

where MCM1K and PASE2 are  respectively a kinase and phosphatase that activate and inactive MCM1. Degradation of CLNB is described by adding one additional term to equation (1) to give



[image: image19.wmf]
These equations are interpreted as follows. The amount of CDCK increases as the cell grows, and the amount of MCM1K increases as DNA is replicated.  The cell waits at the G1 checkpoint until CDCK passes a threshold allowing the system to jump into the “ready state.” At this point the cell can begin S phase and to duplicate its DNA.  As DNA is produced, the concentration of MCM1K increases as per equation (2). When enough MCM1K is produced the system passes another threshold allowing the system to begin cell division (Novak and Tyson 1997; Novak et al 1998,1999; Chen et al, 2000). 

Cellerator Canonical Forms
We propose to add additional modules-on-demand to Cellerator to describe the growth, division and differentiation processes described above.  Cellerator has been validated using a single signal transduction module, the mitogen-activated protein kinase  (MAPK) cascade. MAPK cascades are a common feature of receptor mediated signal transduction pathways and have been implicated in a variety of intercellular processes including regulation of the cell cycle, apoptosis, cell growth and responses to stress.  These molecules are of crucial importance in the development of memory and wound healing.  Abnormal changes in MAPK pathway regulation often mediate various pathologies, most notably cancer.  This central role of MAPK mediated signal transduction in most regulatory processes makes it an especially attractive research and modeling object. A MAPK cascade consists of three sequentially acting kinases.  MAPK is activated by dual phosphorylation at tyrosine and threonine residues by MAPKK.  MAPKK, in turn, is activated by phosphorylation at threonine and serine residues by MAPKKK.   MAPKKK activation is less well understood. It may occur via different mechanisms in different systems, possibly via translocation to the cell membrane.  The cascade occurs in the cytosol.  Its end product, activated MAPK may translocate to the nucleus and interact with the genome, or may interact with a cytosolic receptor. Signal transduction through a MAPK cascade can be very inefficient unless additional regulatory proteins, called scaffolds, are present.  Scaffold proteins nucleate signaling by binding two or more MAP kinases into a single multi-molecular complex.  Scaffolds can change the efficiency of signaling in a concentration dependent manner as well as reduce the non-linear activation characteristics of the cascade.  These properties may be crucial for global and local activation of MAPK as scaffold proteins may selectively translocate to small sub-cellular compartments, thus locally facilitating or inhibiting MAPK activation.  Cellerator includes both types of MAPK module - in solution and when bound to a scaffold.

Cellerator classifies each input as instantiating a particular "input canonical form (ICF)”, chosen from a library of fundamental biochemical processes (see figure 4).  An ICF is a single chemical formula typical of a wide class of reactions.  Examples of ICFs include association, dissociation, degradation, conversion, creation, enzymatic, transcriptional, and translational reactions. Input canonical forms are not the same as input forms. For example, the input 
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Figure 4. Foreground:  Outline of the Cellerator algorithm for model generation. Explicit input control is available at every step. Background: on the top, automatically generated chemical reactions for the MAPK cascade in solution (the same cascade on a scaffold is shown to the upper right); below that, one of 86 differential equations generated for the three-stage MAPK cascade on a scaffold in the absence of phosphatases; to the right, a Cellerator palette showing some basic user selectable chemical reactions.


[image: image21.wmf] denotes the conversion of molecule S into P via an enzymatic reaction facilitated by E. Hidden within this notation are three chemical reactions
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where the 
[image: image23.wmf]are rate constants. Two-way reactions are input as 
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where G is the reverse enzyme.  This two way reaction corresponds to six simple chemical reactions. Indices describe steps in a cascade. A 3-step MAPK cascade in solution in the absence of phosphatase  is


[image: image25.wmf]
where asterisks indicate the phosphorylation level. The indexed notation can also be used to indicate scaffold occupancy (see figure 4).  Cellerator also implements cascades-on-command so the user is not required to actually type in all of the chemical reactions.  The corresponding input canonical form for standard biochemical reactions is 
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(3)

where S is a set of reactants and S and S are (possible empty and possibly non-distinct) subsets of S and k is a representation of the rate at which the reaction proceeds.  In general there are rarely more than two elements in either S or S but it is possible for more elements to be present. Fore example, all of the following chemical reactions fall into this form:
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complex formation
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dissociation
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conversion
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degradation
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creation (e.g., through transcription) 

Corresponding to each ICF there is a unique "output canonical form (OCF)" - a mathematical description, usually terms in differential equations - into which the reaction is translated. The corresponding output canonical form is given by the set of differential equations
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(4)

where the i and ci are constants that are related to the rate constants, the signs of the ci are determined from which side of equation (3) the terms in equation (4) correspond to, and the nij represent the cooperativity of the reaction. The summation is taken over all equations in which Xi appears. Multi-molecular reactions (e.g., binding to a scaffold protein) and multiple interacting and overlapping pathways are described in much the same way. 

Generalized-Hill type functions. We propose to modify Cellerator to account for genetic transcription and translation into proteins by an extension of equation (4) to include terms of the form



[image: image33.wmf]
(5)

where the product runs over the various transcription factors 
[image: image34.wmf] that influence production of Xi.   If there were any reactions of the form (1) for Xi then the expression on the right side of equation (5) would be added to the right hand side of (4).  In a more realistic system, a gene would be influenced by a (possibly large) set of promoter and enhancer elements Xi that bind to different sites, as described in the next paragraph.  

Promoter Structure. We propose to describe promoter structure with a hierarchical model (call Hierarchical Cooperative Activation, HCA) with the set of interactions 
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(6)
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where i and j index transcription factors,  indexes promoter modules,  indexes binding sites, the function j() determines which transcription factor j binds at site j, the J and K are constants, and  is a degradation rate.  

Compartments. Sub-cellular components represent a higher order of biological complexity.  If we assume perfect mixing each component can be treated as a separate pool of reactants that we can describe by the reaction
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This is taken to mean that X in pool A is transported into pool B at some rate. When the concentration changes and distances involved are small such processes can be described by the canonical forms in equation (3).

Gene Circuit Modeling

In addition to Cellerator, the machine learning systems group at JPL has previously approached the similar problem of formulating a genetic regulatory circuit model to observed microarray-based gene expression data. This process used machine-learning algorithms to fit the parameters in the circuit model to the observed gene expression patterns using the Neuroect software platform  (Reinitz et al. 1995; Reinitz and Sharp 1995; Marnellos and Mjolsness 1998; Mjolsness et al 1999).   Here we propose to modify and extend these methods so that they can be applied to the principal loci of pattern formation in plants, with particular emphasis on Arabidopsis in particular), including the shoot and root apical meristems.

The gene circuit method (Mjolsness et al. 1991) describes primitive biological “objects” such as cells or nuclei by their internal state, given as a vector of nonnegative quantities that we may interpret as concentrations of important gene products.  The state vectors are subject to a dynamics similar to analog circuits or analog neural network models, in which an object’s state vector and those of its neighbors determine the derivative of the state vector.  The influence of neighboring objects may occur by diffusion, as in the diffusion of transcription factors along the anterior-posterior axis of the syncytial blastoderm of Drosophila, or by cell-cell signaling modeled by mass action formation of receptor-ligand signaling complexes, as in Notch/Delta signaling in Drosophila neurogenesis.  In addition to the circuit-level description of individual developmental mechanisms, we incorporate a “grammar” akin to L-systems, which can integrate multiple developmental mechanisms each, described by circuit, mass-action, or other parameterized dynamics.  Neuroect efficiently interprets the grammar.

The circuit-level description requires that a number of parameters be determined from available gene expression data, before one can predict further expression data.  The parameters to be determined include connection strengths between each pair of circuit “players” (state vector components such as important transcription factor concentrations) which might regulate one another; also the relevant transcription rates and autonomous decay rates.  We propose to use the specialized simulated annealing optimization method (Lam and Delosme 1988) to determine these parameters from gene expression data as previously described (Reinitz and Sharp 1995; Marnellos 1997).  We have recently formulated partition functions for promoter-level description of transcription complexes (see equation (6)); this parameterization of dynamics can be specialized to analog neural networks or to analog versions of Boolean functions, and we plan to add this kind of dynamics as an option to our data-fitting software.

We need to model local signaling at cell walls coupled bidirectionally by unmodeled fast dynamics, including kinases, transcription factor dynamics in the nucleus, and their effects on the cell cycle so that the right pattern of cell divisions occurs at the right times.  Neuroect has been previously applied to Drosophila to model local signaling at cell membrane contacts coupled bidirectionally by unmodeled fast dynamics to transcription factor dynamics in the nucleus, and their effects on cell type determination: the selection of a sparse subpopulation of cells to delaminate and become neuroblasts at the right times.  It is not necessary to hypothesize any homologies in order to exploit the formal similarity of these two situations for modeling purposes; in other words, the same techniques used for Drosophila should be equally applicable to Arabidopsis. In addition we propose to add developmental mechanisms using circuits and grammars, including grammar “rules” for autonomously determined cell division, incorporating existing models of cyclins such as those described above.  
NASA Relevance

The work described in this proposal is relevant to several NASA long term needs, particularly those involved in long-duration manned deep-space missions, such as Mars exploration. For life detection and the origin of life studies, a computational, genome-wide understanding of terrestrial organisms will be essential. Developmental and differential processes are essential parts of this understanding.  For example, understanding how endolithic organisms manifest in terrestrial samples will help us interpret drilled samples of rocks returned from Mars.  Furthermore, an evolutionary understanding of these processes is essential to framing hypothesis about the origins of terrestrial RNA and DNA based life. Extraterrestrial life is almost certainly going to possess some kind of molecular regulatory circuitry so we must be prepared by understanding the single class of known regulatory circuits, namely those of terrestrial based life.  Entire regulatory networks are clearly related to one another evolutionarily; cross-species homologies are a major clue to understanding genomic data and the course of evolution.  

These molecular- and cellular-level algorithms can also be applied to engineer transgenic organisms in bio-cellular autonomous sensing devices. Molecular-based computations occur extensively in nature. We believe that these natural switching, signaling, sensory and reactive modules can be rearranged and used to build sophisticated autonomous systems, ideally suited for future NASA missions because all operations are driven by self-organizing chemical reactions. Potential applications include environmental control and atmospheric recycling; clocks and oscillators that work on "human" time scales; biomedical sensor (dangerous organisms, toxins); food preparation and space farming; in-situ biochemical testing for life-detection (e.g. Mars Sample Return); photo-detection (e.g. via a rhodopsin based-process).  Such devices would be efficient, have low power utilization requirements, be fully autonomous (they are driven by chemical reactions) and have relatively low manufacturing costs. 

Other applications include biofabrication and space farming.  If we are to establish a permanent presence in space a self-sustaining industrial and agricultural infrastructure will be essential.  We will need to design industrial and agricultural processes that are suited to the demands of a space-environment including a controlled atmosphere, microgravity, limited space, artificial lighting, and the close proximity of objects that normally would not interact.  For example, it would be helpful to engineer crop plants that could grow in tight quarters yet be highly productive, perhaps producing multiple products (e.g., a potato/tomato plant).  Organisms that could sense unsafe levels of carbon dioxide or ethylene would also be useful.  Combining biosensors and nano-technology microscopic diagnostic sensors and robots might be designed that could be injected into astronauts bodies on demand. 

Meristems, in particular, are the source of nearly all human food and fiber; of all of our cellulose (and thus paper and rayon, for example); and of substantial quantities of chemicals, pharmaceuticals, oils, waxes, perfumes and cosmetics.  Future genetically modified plants might be able to produce precursors for plastics.  Plants and oceanic algae could be used to produce oxygen and recycle carbon dioxide.  If we can control plant development at the levels of gene expression circuitry, we can modify plants to adapt to altered conditions in greenhouses not only in space vehicles but on future planetary bases.  
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Figure 3. The cell cycle is divided into four phases.  DNA synthesis occurs during S-phase and mitosis 


(cell division) occurs during M-phases.  Cell growth occurs during gap phase G1, and during G2 the cell is believed to be preparing for mitosis. Key proteins in a minimal cell division model are illustrated on the right.  Arrows are excitatory influences, discs inhibitory influences. 





Figure 2. Putative SAM central zone pathway based on the CLV (CLAVATA) gene pathway.  CLV3, secreted by the outer layers, binds to the CLV1 receptor kinase, which probably acts either as a dimmer or heterodimer.  Ligand binding induces phosphorylation (P) of CLV1 and the formation of an active complex involving Rop and KAPP.  KAPP is a phosphatase that inactivates CLV1. Activated CLV1 represses WUS, a transcription factor that promotes cell division and inhibits cell differentiation.  Other genes thought to have a role include CUC1, CUC2, STM and ZLL/PNH. After Fletcher & Meyerowitz (2000) 
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