PROPOSAL TO

JPL RESEARCH & TECHNOLOGY DEVELOPMENT FUND
FY 2002

Software Based Fault Detection for On-Board Science Applications

06 February 2002

PRINCIPAL INVESTIGATOR:
 Dr. Michael Turmon, Section 367
CO-INVESTIGATOR(s):

Mr. Robert Granat, Section 367
APPROVALS:

Dr. Dave Atkinson

Acting Division Manager - Division 36

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CA

R&TD PROPOSAL SUMMARY AND DATA SHEET

Proposal Title:
 Software Based Fault Detection for On-Board Science Applications

Principal Investigator: Dr. Michael Turmon; 367; M/S 126-347; x3-5370

Co-Investigator(s):
 Mr. Robert Granat; 367; M/S 126-347; x3-5353

Proposal cost:
 $119K
Expected results of this R&TD:

A.
Specific goals and products:

High-fidelity testing of fault detection software to see if initial tests reflect true fault detection performance. Testing will use production LAPACK and FFTW codes.

Routines for fault detection integrated within a target science operation, probably Mars Smart Lander (MSL).

Tested and well-understood fault-detecting LAPACK and FFTW codes.

B.
What are the major technical challenges to overcome?

The major challenge is to perform accurate testing to ascertain good estimates of the ultimate performance of these fault-detection methods, and to tune the methods to achieve best performance. Their performance is known in general terms, but testing is needed to assure the ultimate users in the viability of the technology.

A second significant challenge is to integrate the software fault-tolerance methods with a selected application code, and perform testing of the ensemble.

C.
What are the key milestones?
· Integration of fault-testing instrumentation within fault- tolerant LAPACK

· Integration of fault-testing instrumentation within fault-tolerant FFTW

· Completion of fault-detection tests with LAPACK and FFTW

· Testing of fault-detecting codes with a science application

D.
What is the relevance to JPL’s strategic goals?

The software will enable JPL to deploy intelligent, capable spacecraft at a lower cost. It supports aerobot and rover navigation (low power) and interferometric missions (computationally intensive calibration and onboard data processing).

Area: Evolutionary software technology (reliable computing)

ABSTRACT

Proposal Title: Software Based Fault Detection for On-Board Science Applications

Principal Investigator: Dr. Michael Turmon

Affiliation:
 Section 367; M/S 126-347; x3-5370

This effort is aimed at bringing reliable, high-performance computing technology within the reach of science applications running on space platforms. Conventionally, spacecraft components have been radiation-hardened to protect against faults caused by galactic cosmic rays and energetic protons. However, this radiation-hardening means that processors available in space lag commercial processors by a generation. One way around this is to use contemporary commercial off the shelf processors and catch the resulting faults in software — and the ability to catch faults may be of interest to mitigate risk due to data corruption in other circumstances as well.

One step in doing this is to take advantage of the structured character of typical scientific analysis algorithms — much of their time is spent on structured numerical manipulations like linear systems solution, least squares, Fourier transforms, and numerical optimization. Protecting these operations may cover a large portion of faults. We propose to leverage existing in-house knowledge at JPL to raise these procedures from a TRL of 4 to 6, to test them more effectively, and to integrate them into an application code for limited end-to-end tests.

Currently, these software fault-detection algorithms, which collectively go under the name ABFT (algorithm-based fault-tolerance) have been analyzed and tested in a limited way in research here at JPL. While these initial results were very encouraging (over 99% of all significant faults can be detected with very low overhead), support from RT&D would allow the procedures to be understood more completely and improved. This realistic testing and end-to-end verification would enable mission designers to count on these methods to contribute to fault tolerance of their scientific control software.

We identify three thrusts in the proposed work:

· Integrate the fault-detecting routines in LAPACK and FFTW

· Test these routines comprehensively at high fidelity

· Integrate one science application code with these routines to evaluate its performance

 FY 2002 FUND BUDGET SHEET

	Category
	AT JPL

	DIRECT COST
	

	1. Salaries(Itemize)

PI, Turmon, 0.25 FTE

Co-I, Granat, 0.45 FTE
	57.1

	2. Labor Fringe Rates - Employee Benefits 49.3%
	28.2

	3. Equipment

	0

	4. Supplies and expenses
	3.0

	5. Travel (only as a research cost; and no conference travel is allowed)
	0

	6. Other (itemize)

Chargebacks: DNS, telephone

	4.1

	7. Total Direct Costs
	92.4

	ALLOCATED DIRECT COSTS (ADC)
	26.6

	ADC
	

	8. ADC at JPL consisting of:

 a. Labor ADC $20.08/hr.

 b. Contracts ADC 2.82%

 c. Purchase Orders 11.31%

	24.0

2.6

0

	9. Total budget:

(Direct plus Allocated Direct costs
	119.0

	

Software Based Fault Tolerance

for Spaceborne Science Applications

Introduction

We propose to develop and test a software based method for detecting faults during numerical computations. This method targets faults induced in spacecraft by galactic cosmic rays and energetic protons. Traditionally, spacecraft components have been radiation-hardened to protect against these faults, but doing so lowers the clock speed and increases the required power of a component. Even worse, the time needed to radiation-harden a component guarantees both that it will be outdated when it is ready for use in space, and that it has a high cost which must be spread over a small number of customers. Software based fault detection promotes the use of higher-performance, lower-cost, commodity off-the-shelf (COTS) components. This helps make it possible to run far more sophisticated software, e.g. for better instrumental calibration, autonomous navigation, or science analysis. Such advanced software in turn facilitates achievement of science goals while reducing cost incurred by ground-based control and communication. Even where commercial components are not used, this software allows greater robustness to faults or other errors.

Our technology, known as algorithm-based fault tolerance (ABFT) or result checking (RC), is designed to detect errors in the output of numerical subroutines. This approach works well because typically scientific codes spend much of their time in certain common numerical subroutines — for example, about 70% of the processing in a Next Generation Space Telescope phase retrieval algorithm [ML98] is spent doing fast Fourier transforms. Furthermore, the technology has been demonstrated to have negligible overhead. This makes it compare favorably with fault detection schemes that involve replication of processes.

In previous work, we performed numerical analysis to understand the theoretical performance of software-based fault-detection in numerical routines. Guided by this understanding, we carried out controlled numerical experiments with a greatly simplified fault model to determine how well these procedures worked in practice to discriminate floating-point roundoff error from fault occurrence. We realized these ideas by developing fault-detecting middleware that applied this technology to existing parallel numerical libraries. The results were encouraging for the further development of this technology.

Objectives

Our goal in this work is to push this fault-detection technology ahead from a technology readiness level of about four (critical function validated in laboratory environment) to six (subsystem validated and demonstrated in a realistic problem). This will require comprehensive high-fidelity testing of fault detection software to see how well our initial tests reflect true fault detection performance. Testing will be performed using production LAPACK and FFTW codes, and will employ synthetic fault injection to introduce reproduceable faults at any stage of the computation. This will result in well-characterized LAPACK and FFTW codes that detect and optionally recover from internal faults; our intention is both to demonstrate fault tolerance capabilities and to better understand the nature of those faults that may occur. Finally, we intend to integrate the fault-resistant routines within a target science application, such as Mars Smart Lander (MSL), and perform end-to-end testing.

Significance

Algorithm based fault tolerance allows many radiation-induced errors to be detected in software, thus promoting the use of commodity off-the-shelf (COTS) components for spaceborne applications. COTS hardware provides important advantages: first, cost savings over radiation hardened components; second, improved power and performance characteristics; third, due to improved performance, more sophisticated on-board calibration, analysis, and autonomy applications can be employed. For missions where a pure COTS strategy proves too risky, detection of data faults in software provides an extra degree of robustness that should mitigate some failure modes. These advantages are gained without any significant loss of performance for the application.

This technology can enable several missions of strategic importance to JPL. Origins missions, both conventional and interferometric, will require extensive and reliable on-board calibration. The Next Generation Space Telescope (NGST), for example, plans to use an on-board phase retrieval algorithm for calibration of its multi-element mirror; this computation is dominated by the Fourier transform. Future Mars missions, like Mars Smart Lander, will benefit from low-power-use, autonomous navigation offered by computer vision algorithms using Fourier transform, convolutions, and least-squares fitting. Support for developing this technology might be expected to come from NASA via CETDP (Cross-Enterprise Technology Development Program) but the uncertainty surrounding that program limits its reach. JPL has the opportunity to capitalize on its leadership in this area of reliable computation by developing it and infusing it into these strategic mission areas.

Technical Methodology

Our method is designed to automatically detect faults to program data which occur during core numerical operations. A fault affecting program code will be very likely to cause an immediate segmentation violation, which will be detected by the operating system and dealt with by system-level software. On the other hand, faults to data are more pernicious because if undetected, tainted data will propagate through the system unnoticed. For example, below left is a Fourier-transformed image which has an error, shown at right, due to a single-event upset which occurred during the transform computation. Naive sanity checks will pass over such medium-sized errors, but by exploiting the structure of core numerical computations, they can be reliably detected. This observation is the core of the fault-detecting methodology we describe.

	Computed Fourier Transform
	Error Due to SEU

	[image: image1.png]

	[image: image2.png]

Scientific codes typically spend much of their time in common numerical subroutines; protecting these subroutines from faults is one ingredient in an overall software-implemented fault-tolerance scheme. Our approach has been to wrap existing parallel numerical libraries (ScaLAPACK [B+97], Plapack [GABE97], FFTW [FJ98]) with fault-detecting middleware, as shown below, to produce a user-transparent fault-detecting library. A checksum is computed before the computation and compared with the result’s checksum. If their difference is greater than some threshold, an error is declared. Such schemes go under the names result-checking (RC, [WB97]) or algorithm-based fault tolerance (ABFT, [HA84]).

[image: image3.png]numerical
operation

throw error

result(s)

One powerful aspect of this methodology, implicit in the figure, is that it is not necessary to modify the internals of the numerical routine to protect it from faults. This avoids altering the internals of a highly tuned and complex numerical algorithm, so its performance and correctness is not compromised. (For example, FFTW assembles a suitable collection of “codelets” at runtime based on machine characteristics — such sophistication is becoming a characteristic of contemporary numerical algorithms.) Furthermore, because the fault-detection stage is kept separate from the execution of the underlying operation, it is trivial to recompile the fault-detection library to incorporate updates in the numerical routine. In fact, as we shall see, there is a relatively consistent methodology for fault-protecting a routine, even in its parallel processing versions.

As a specific example demonstrating this methodology, consider the QR factorization, which is the heart of some least-squares fitting procedures. This algorithm decomposes an input matrix A into a product of two factors

	
	
[image: image4.wmf]A

=

QR

	(*)

by finding a suitable upper-triangular matrix R and orthogonal matrix Q. But in space, the computed Q or R may have errors (like those seen in the image above) due to single-event upsets. The relationship (*) can be used as a check: multiply the computed outputs together and compare to A. Unfortunately, this check takes almost as much time as repeating the original decomposition.

A far faster check, indicated above, is to find and compare the vectors

[image: image5.wmf]c

1

=

wA

,

 and

c

2

=

wQR

for a probe vector w that we choose. Because of floating-point roundoff,
[image: image6.wmf]c

1

 and

c

2

 will not be exactly equal, so the difference must be compared to a small positive threshold  to decide if an error has occurred. In our earlier work, we analyzed how to set the numerical tolerance , to separate errors caused by a fault from those inherent in finite-precision numerical calculations. To distinguish these two classes of errors, we employed well-known bounds on error-propagation within linear algebraic algorithms [GV89,H96]. We developed error propagation results to cover all eight of the operations listed in the table below. Furthermore, a general mechanism for obtaining bounds for new operations based on the operator-specific postcondition was developed and documented [TG00]. All of the tests are based on identifying a postcondition, like (*), which the result must satisfy, and finding a quickly-computed checker for the postcondition.

[image: image7.png]Operations and Postconditions

Name Signature Postcondition
Product P =mult(A, B) AB =P
QR decomposition (Q, R) =qr(A) A=0R
Sing. value decomposition (U,D,V) =svd(Ad) A=UDVT
LU decomposition (P,L,U)=1u(A) A=PLU
System solution x = solve(A, b) Ax =b
Matrix inverse B = inv(A) AB =1
Fourier transform y =fft(x) y=Wx
Inverse Fourier transform x =1ifft(y) x=n"1wTy

We performed controlled numerical experiments to develop input-independent tests discriminating floating-point roundoff error from fault occurrence. We carried out the tests by explicitly using standard decision-theoretic tools: the probabilities of false alarm and detection, and their parametric plot via a receiver operating characteristic (ROC) curve. This allows customers to judge the tradeoff of allowing a small chance of false alarm (correct computation claimed to be faulty) in exchange for a large increase in the chance of detecting a fault. Validation experiments were conducted in an artificial environment by generating synthetic data in which single faults were induced before or after each step of the computation. In these experiments, threshold tests designed according to our methodology detected 99.9% of numerically significant faults in multiplication, QR, LU, and singular value decompositions, matrix inverse, and Fourier transforms, with zero false alarms. (We define a numerically significant fault as one causing a relative error of at least one part in
[image: image8.wmf]10

10

 in the affected element.) This testing also established precise numerical values for the tolerance . Testing is necessary for this determination, because different algorithms accumulate roundoff error at different rates.

Such a result is shown in the table below, which describes Fourier transform error rates in double-precision arithmetic when the tolerance  is set to give no false alarms. As the relative fault size (first column) is varied, the chance of detection for three methods (two different checksum tests, and the Parseval or conservation-of-energy criterion) changes. Standard errors are shown in parentheses after each quoted probability. For example, the second line of the table means: if we only consider faults which caused a relative error of at least
[image: image9.wmf]10

-

14

 in the affected quantity, the first checksum test was able to detect 93.1% of all faults, the other checksum test 85.5%, and the Parseval test 86.9%. One goal of testing is to determine which detection tests are best. Using the best test, the first column, we see that software can detect all the faults of size greater than
[image: image10.wmf]10

-

11

. (Faults comparable to the floating-point roundoff size,
[image: image11.wmf]2

´

10

-

16

, are undetectable by any method.) This performance is very promising.

Detection Probability at Zero False Alarms

Fast Fourier Transform

[image: image12.png]E;’e“l"‘ Checksum 1 Checksum 2 Parseval
0 .838(.003) .771(.003) .783 (.003)
107 931(.002) .855(.003) .869 (.003)
10713 980 (.001) .904(.002) .920 (.002)
10712 997 (.001) .946(.002) .956 (.002)
1071 1(.001) .975(.002) .970(.001)
10710 1(.001) .986(.002) .973(.001)
107° 1(.001) .988(.002) .974(.001)
1078 1(.001) .988(.002) .972(.002)

These tests are encouraging but are limited because the routines tested were simple textbook codes, not production codes. Also, the faults were injected only at one possible point in the inner loop of the code, not anywhere as would be seen in practice.

As part of the proposed work, we will perform more realistic tests of the fault detection characteristics of all of these operations. These tests will be done in a representative “best-of-breed” setting: LAPACK [A+00] for linear-algebraic routines, and FFTW for Fourier operations. The LAPACK tests will be more realistic than the testing described above for two reasons: LAPACK is a more sophisticated code base than simple textbook codes, and LAPACK uses blocked algorithms for better performance. The FFTW tests are more realistic for similar reasons. The fault injection mechanism we will use is ERFI (Exact, Repeatable Fault Injector) which is a software fault injector already written by Mr. Jeffrey Deifik of JPL. ERFI allows registration of a set of buffers where faults may occur, and injection anywhere into these regions at defined parts of the program. Importantly for us, ERFI also allows repeatability so that faults that elude detection can be scrutinized. Repeatability is very difficult to assure under hardware fault injectors.

This testing aims to get good estimates of the ultimate performance of these fault-detection methods, to tune the methods to achieve best performance, and to exercise them under more realistic conditions to expose and correct their weaknesses. Their performance is known in general terms, but testing is needed to assure the ultimate users in the viability of the technology.

Additional tests will performed on fault detecting subroutines integrated into a specific spaceborne application. The exact subroutines tested in that context will depend on the demands of the application software. We predict that some Fourier transform, two-dimensional convolution, or least-squares procedure will be the targets of testing there.

This work has been presented in various venues, including the IEEE Conference on Dependable Systems and Networks, one of the main forums for fault-tolerant computing research [KST99,TG00,TGK00]. A full paper is to be published in the IEEE Transactions on Computers [TGKL02]. Reviewer comments include, “The presented treatment is new, mainly in the thoroughness of the discussion, thus presenting highly usable conclusions.” The software we developed has been part of various demonstrations to technical peers. It exists as source code and an application-transparent library.

Extensions

At the same time, we intend to identify opportunities to extend these techniques to other common subroutines, such as optimization, sorting, numerical integration, and differential equation solution. Many structured scientific computations lend themselves to automated checking like that described here. Finally, before the technology is mission-ready, realistic hardware-based fault injection will have to be performed. Because hardware fault injection is not repeatable, developing a clear understanding through software testing is a necessary intermediate step.

References

[A+00] E. Andersen et al., LAPACK User’s Guide, third ed., SIAM, 2000.

[B+97] L. S. Blackford et al., ScaLAPACK Users' Guide, SIAM, 1997.

[FJ98] M. Frigo and S. G. Johnson, “FFTW: An adaptive software architecture for the FFT,” in Proc. ICASSP, 1998, vol. 3, pp. 1381-1384.

[GABE97] R. A. van de Geijn, P. Alpatov, G. Baker, and C. Edwards, Using PLAPACK: Parallel Linear Algebra Package, MIT, 1997.

[GV89] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins, Baltimore, second ed., 1989.

[HA84] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for matrix operations,” IEEE Trans. Comput., vol. 33, no. 6, pp. 518-528, 1984.

[H96] N. J. Higham, Analysis and Stability of Numerical Algorithms, SIAM, 1996.

[KST99] D. S. Katz, P. Springer, and M. Turmon, “Software Fault Tolerance for Remote Exploration and Experimentation,” High-Performance Embedded Computing Workshop, MIT Lincoln Laboratories, 1999.

[ML98] T. Murphy and R. Lyon, “NGST autonomous optical control system,” Technical Report, Space Telescope Science Institute, 9 March 1998.

[WB97] H. Wasserman and M. Blum, “Software reliability via run-time result-checking,” J. ACM, vol. 44, no. 6, pp. 826-849, 1997.

[TG00] M. Turmon and R. Granat, “Algorithm-Based Fault Tolerance for Spaceborne Computing: Basis and Implementations,” Proc. IEEE Aerospace Conference, vol. 4, 411-420, 2000.

[TGK00] M. Turmon, R. Granat, and D. S. Katz. “Software-Implemented Fault Detection for High-Performance Space Applications,” Proc. IEEE Conf. Dependable Systems and Networks, 2000, 107-116.

[TGKL02] M. Turmon, R. Granat, D. Katz, and J. Z. Lou, “Tests and tolerances for High-Performance Software-Implemented Fault Detection,” in press at IEEE Trans. Comput., February, 2002.

[T02] M. Turmon, http://www-aig.jpl.nasa.gov/dus/abft/

Milestones and Deliverables

The deliverable items are:

· ABFT-equipped LAPACK software covering at least multiplication, systems solution, matrix inverse, and LU, QR, and singular value decompositions.

· ABFT-equipped FFTW software covering at least the forward and inverse one-dimensional transforms.

· Software drivers used for testing as outlined above.

· Complete test results analyzing fault detection performance and chacterizing fault detection weaknesses (for example, for specific types of input) using the repeatable fault injection capability.

· Results for end-to-end tests of an ABFT-equipped scientific application code.

· A final report presenting our analysis and summary of all results.

We will meet the following milestones for this work:

	1 May 2002
	Integration of fault-testing instrumentation within fault-tolerant FFTW

	1 June 2002
	Integration of fault-testing instrumentation within fault-tolerant LAPACK

	1 August 2002
	Completion of fault-detection tests with LAPACK and FFTW

	1 October 2002
	Integration of fault-detecting codes with a science application

The budget calls for $119K and 0.7FTE to complete the project.

Biographical Information

Michael Turmon is a Principal Member of the Technical Staff in the Data Understanding Systems Group, Section 367, at JPL. He received B.S. degrees in computer science and in electrical engineering from Washington University, St. Louis in 1987, and the PhD in electrical engineering from Cornell University in 1995. Michael’s areas of research are in the theory of pattern recognition, science data analysis, scientific computing, fault-tolerant computation, and neural networks; see the references for his publications relating to fault-tolerant computing. Michael was a National Science Foundation fellow and is a Presidential Early Career Award (PECASE) recipient. He was awarded the NASA Exceptional Achievement Medal for his work on optimization-based pattern recognition for solar image analysis. He reviews for the IEEE Transactions on Neural Networks and IEEE Transactions on Signal Processing, for the Machine Learning Journal, and for various technical conferences. He is a member of the IEEE (Computer Society) and the Institute for Mathematical Statistics.

Robert Granat is a Senior Member of the Technical Staff in the Data Understanding Systems Group at the Jet Propulsion Laboratory. He received his B.S. in Engineering and Applied Science from the California Institute of Technology, and his M.S. in Electrical Engineering from the University of California, Los Angeles in 1998. Robert's areas of research are large-scale scientific computing, software fault tolerance, statistical pattern recognition, and tomographic imaging; see the references section for publications related to this proposal. Robert received a NASA “Level B” award for his previous work in fault tolerant computing at JPL. He is a member of the IEEE.

_1062601969.unknown

_1062925277.unknown

_1074370817.unknown

_1074370835.unknown

_1074370773.unknown

_1062924119.unknown

_1062601045.unknown

