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Executive Summary:
This proposal is aimed at the topography and surface change challenge in the SENH NRA. We

address items B.2.b, “Applications of Southern California Integrated GPS Network and similar
geodetic networks,” and B.1.a, “develop techniques which contribute to a better understanding of
crustal dynamics for the mitigation of earthquake risk.” We propose to construct statistical models
of geophysical data, including GPS sensor trajectories and seismic history. The information learned
from these models will enable breakthroughs including earthquake classification, automatic anomaly
detection, sensor motion clustering, advanced signal modeling, and data cleaning. The modeling
tools are general-purpose and will be released to the geophysics community along with derived data
products.
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1 Abstract

We address SENH research announcement items B.2.b, “Applications of Southern Cali-
fornia Integrated GPS Network and similar geodetic networks,” and B.1.a, “develop tech-
niques which contribute to a better understanding of crustal dynamics for the mitigation
of earthquake risk,” by using novel statistical methods to learn models for, and to classify,
seismicity and geodetic data. These methods include Hidden Markov Models (HMMs)
which track the evolving state of a fault system or GPS signal, and Kalman filters, which
will be used to classify GPS sensor responses and track microblock motion. These sta-
tistical approaches offer inherent confidence estimates and error bars so their predictions
can be evaluated, or fed into other modeling systems. They allow investigators to extract
meaning from Earth Science datasets and to focus on interesting and unusual behaviors.

The innovative science that will result from these methods will include:

Earthquake classification: Automatic and objective classification of events into categories
such as aftershocks, swarm events, and foreshocks. We can then link events to underlying
physical processes, and learn how processes interact over time. This information will
improve hazard assessment.

Anomaly detection: Detection of mode changes in GPS signals to better understand when
new behaviors arise. With this tool we can rapidly find and determine the extent of
anomalous behavior.

Sensor clustering: Detection of related patterns of crustal motion to group GPS sensor
sites into coherently-moving blocks, allowing the objective discovery of the extent and
velocity of crustal microblocks.

Signal modeling: Modeling and understanding spatially linked distortions to GPS signals,
such as tropospheric delays. Accounting for and removing these distortions improves
signal to noise ratio in the calculated position estimates.

Data cleaning: Intelligent filling in of missing data segments to allow application of meth-
ods requiring continuous data.

The end product of our work will be innovative scientific analysis of at least three geo-
physical data sets along these lines, as well as the software tools we develop that make the
analysis possible. This software will be general enough to be applied to many other related
sources of geophysical data. To facilitate their eventual use in a wide variety of geophysi-
cal analysis efforts, our software tools will be distributed through the NASA/HPCC GEM
web portal to the larger geophysical research community.
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2 Technical Plan

This proposal addresses the topography and sur-
face change challenge in the Solid Earth and
Natural Hazards research announcement. It will
contribute to understanding how the Earth’s sur-
face is being transformed and use this under-
standing to help predict future changes and as-
sess natural hazard. Our project will further
NASA’s mission by enhancing the application of
space-based technologies. To do this, we propose
to construct models of geophysical data includ-
ing GPS sensor trajectories and seismic history.
The information learned from these models will
make possible numerous breakthroughs:

Earthquake classification: Automatically and
objectively classify events into categories such
as aftershocks, swarm events, and foreshocks.
We can then link events to underlying physical
processes, and learn how processes interact over
time. This information will improve hazard as-
sessment.

Anomaly detection: Detect mode changes in
GPS signals to better understand when new be-
haviors arise. With this tool we can rapidly find
and determine the extent of anomalous behavior.

Sensor clustering: Detect related patterns of
crustal motion to group GPS sensor sites into
coherently-moving blocks, allowing the objective
discovery of the extent and velocity of crustal
microblocks.

Signal modeling: Model and understand spa-
tially linked distortions to GPS signals, such as
tropospheric delays. Accounting for and remov-
ing these distortions improves signal to noise ra-
tio in the calculated position estimates.

Data cleaning: Intelligent filling in of missing
data segments to allow application of methods
requiring continuous data.

2.1 Objectives and Significance of the
Proposed Work

The Historical Moment The earthquake re-
search community is standing at the edge of a
watershed in the quantity of available data. Con-
sider the situation in Southern California: With
the completion of the SCIGN network in June

2001, Southern California now has 250 contin-
uously recording GPS stations. Trinet and the
Southern California Seismic Network now pro-
vide seismic data which is unprecidented in both
quality and quantity. InSAR measurements are
starting to become available which provide de-
tailed deformation information with pixel spac-
ings of tens to hundreds of meters. Active seis-
mic experiments contribute a wealth of informa-
tion about the subsurface structure. Other areas
of the world such as Japan and Taiwan are also
experiencing a buildup of measurement capabil-
ity.

Automated techniques are necessary to as-
sist in coping with the deluge of information.
They have been effectively deployed in other do-
mains: discovering high-redshift quasars in as-
tronomy [9], locating volcanoes in planetary sci-
ence [5], reliably identifying sunspots in solar
physics [29], and uncovering new dynamics in at-
mospheric modeling [27]. These techniques help
assist scientific understanding and hazard assess-
ment in a number of ways: they can analyze
large quantities of data that would overwhelm
human analysts, they can find subtle changes in
the data that might evade an unassisted human
expert, they allow investigators to focus on in-
teresting phenomena by modeling typical behav-
ior and noting deviations from it, and they as-
sist in objective decision making in cases where
even experts disagree (for example, identifying
aftershock sequences, or modes in GPS signals).
If systems of significant generality are devel-
oped, other geophysics investigators can re-use
the same model family and fitting algorithms on
their data. These techniques are not expected to
replace human analysis, but to be tools for hu-
man experts to use as part of the research cycle.

Hidden-Variable Models The organizing
principle of the proposed work is a general state-
space framework for modeling, classifying, and
predicting the dynamics of an underlying geo-
physical process. (See figure 1.) Earthquakes
and other seismic events are the observable prod-
uct of a complex, nonlinear evolution within a
high-dimensional phase space, shown schemati-
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Figure 1: System phase-space evolution, partially observed through a noisy projection

cally in the top of the figure. This underlying
system is not fully observable — indeed, most of
the state information is relatively uninformative
about natural hazards. At each time step, the
system evolves and a new snapshot of its behav-
ior is taken. These snapshots are a noisy projec-
tion of the full system state into a vector of just
a few components, as depicted in the lower part
of the figure.

Observable patterns are emergent processes
that reflect the structures, dynamics, and prop-
erties of the underlying high-dimensional system.
The job of the analyst is to use the observations
to look back into the physical system and gather
information about it — not to infer the full state,
but just the explanatory variable that is most re-
lated to the processes being studied.

For example, during an earthquake the sys-
tem jumps to a radically different part of phase
space, and this transition can be explained by
a change in the value of a discrete explanatory
variable. In the example of the SCIGN network,
with 250 stations it is necessary to develop auto-
mated tools for classification of the signals. The
signals of interest must be coherent between sta-
tions in the light of a geophysical model. We
know of several sources of coherent and incoher-
ent signals in the SCIGN data. The signal of
primary interest is of course generated by slip
on a fault or collection of faults. We have also
observed coherent signals which we attribute to
ground water pumping and recharge. Incoher-
ent or coherent signals could come from tropo-

spheric effects, and possibly thermal effects. It is
not possible using unaided human inspection to
identify and understand all the signatures in the
SCIGN data. We need automated generic tools
to aid in identifying and classifying the signals
we are observing.

Proposed Work We propose to develop and
use state-of-the-art, high-performance pattern
recognition techniques to analyze geophysical
data in this framework — using various data
sets to infer both the values of explanatory vari-
ables and the models that link them to obser-
vations. The proposal targets seismic record
and GPS data, but the methods are general
and will provide a starting point for investiga-
tion of other time-dependent geophysical data
such as gravity or interferometric synthetic aper-
ture radar (InSAR). The resulting tools will be
provided for the use of the geophysics research
community. These techniques can provide not
only understanding of the physical processes that
generate earthquakes, but also the potential for
new classes of practical earthquake forecast al-
gorithms.

For definiteness, consider a sample applica-
tion: the classification of catalogs of seismic
events using seismic record data. Earthquake ac-
tivity in a geographic area can be regarded as a
time series, with each seismic event representing
a point in the series. Each event has observable
quantities such as location and magnitude asso-
ciated with it, but each is also tagged with one of
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a number of discrete hidden states representing
the current underlying pattern of activity. These
hidden states group earthquakes that occur as a
result of some particular physical process: activ-
ity along a particular fault, stress buildup in a
region, or aquifer activity. The grouping of seis-
mic events according to the value of the hidden
state allows scientists to investigate the underly-
ing physical processes indicated by those states.
Furthermore, analysis of the transitions between
states uncovers relationships between physical
processes. For example, activity along one fault
may be statistically related to activity along an-
other fault.

In summary, we propose to develop general-
purpose tools for handling salient objects as they
evolve in time within massive spatiotemporal
datasets. We identify four thrusts in this effort:

• Development of discrete-valued hidden
Markov models for identifying hidden
classes governing seismicity and GPS data.

• Development of continuous-valued Kalman
filter models for modeling, and then classi-
fying, GPS sensor trajectories.

• Release of software to allow other practi-
tioners the ability to perform these analyses
on their own data.

• And finally, in the second year, to integrate
the discrete and continuous variable mod-
eling to better model and classify seismic
activity.

2.2 Impact of Proposed Work

This investigation will use hidden-variable tech-
niques to accomplish several geophysical analysis
tasks:

• Earthquake classification: Automatically
and objectively identify sets of events as,
for example, aftershocks, swarm events, and
possibly foreshocks. See figure 3.

• Anomaly detection: Detect mode changes
in GPS signals to better understand when
new behaviors arise. See figure 4.

• Sensor clustering: Detect related patterns
of crustal motion to group GPS sensor sites.
See section 2.3.3.

• Signal modeling: Model and understand
distortions to GPS signals, such as tropo-
spheric delays. See section 2.3.3.

• Data cleaning: Intelligent filling in of miss-
ing data segments to allow application of
methods requiring continuous data. See fig-
ure 6.

In performing this analysis, we will not do one-
off experiments but develop the technology and
software for learning models relating explanatory
variables to geophysics time series. This technol-
ogy will allow researchers to better understand
data from new observation systems and large-
scale simulations that are now becoming avail-
able. At the conclusion of this scientific analysis,
we will distribute this software and integrate it
into GEM (General Earthquake Models), a new
NASA/HPCC-supported modeling and analysis
facility. The tools we develop are also applicable
to other domains within the purview of natural
hazards assessment, such as studies of volcanism.
See also section 2.3.4.

2.3 Technical Approach and Methods

To establish the technical basis for this work,
we first introduce its fundamental basis, hidden-
variable models for geophysical time series. We
describe the applications of these models to geo-
physical data analysis and hazard assessment,
and our plan for embodying the components via
open software tools.

2.3.1 Knowledge Discovery with Hidden-
State Models

As outlined in the introduction, our fundamen-
tal outlook is to model the unobserved state of
evolving phenomena, and then to use the re-
sulting state estimates to classify phenomena, to
learn about their dynamics, and to group their
dynamics into similarly-behaving classes. The
key recent advance allowing use of these explana-
tory models is the development of computational
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Figure 2: Fundamental models for dynamic data,
with hidden variables u representing underly-
ing states of the physical system, and observable
variables z.

methods for acyclic directed graph (ADG) sta-
tistical models, also known as Bayesian net-
works [21, 15]. We can use these networks to
specify any of a large family of related hidden-
variable structures, which can account for many
patterns of temporal evolution and incorporation
of related data. And then, as we outline below,
the hidden states of the network can be learned
from the observed data using standard methods.

General-purpose models The ADG is a
graph-based formalism for representing a multi-
variate probability distribution; it is specified by
selecting a model structure G and distributional
parameters. The ADG notation was developed
to concisely encapsulate the pattern of depen-
dence encountered in real applications, such as
medical diagnosis [28], and has since been ex-
tended to many domains. The first step in set-
ting out a model structure is to identify the col-
lection of variables, observed and not, to be mod-
eled — each variable corresponds to one in the
graph G. Then, the chain of dependence is set
out by drawing directed links between pairs of
variables that are related, running in direction of
causation. For geophysical data sequences, this
typically means chains of dependence ordered by
time as in figure 2.

The formalism incorporates numerous well-
known models as special cases. For example, a

Markov model (figure 2, top) is an ADG across
time where u(t) directly depends only on u(t−1).
In Kalman filters and hidden Markov models
(figure 2, bottom), the evolution of the state
u(t) is seen noisily through the observations z(t);
typically one wants to recover the hidden state.
This graph is the mathematical expression of
the schematic diagram in figure 1. The hid-
den state variable can take on various physical
meanings. For example, a discrete state vari-
able might represent a type of earthquake (af-
tershock, mainshock, swarm event, and so forth)
while a continuous state variable can represent
various physical attributes, such as position and
velocity. The continuous model can be general-
ized by augmenting the state space with other
evolving but measurable covariates such as tidal
forces, ground water levels, and so on.

In either case, the important quantities are the
probabilities

Pr(u(t) |u(t − 1)) (state evolution) (1)
Pr(z(t) |u(t)) (output distribution) . (2)

If there are, say, N discrete states, the state evo-
lution (1) is quantified by the N ×N matrix A of
state-transition probabilities, while the observa-
tions (2) are described by the N output distribu-
tions for z(t). When the state u(t) is continuous,
the state evolution (1) is Gaussian with a mean
and covariance depending on u(t − 1), and the
output distribution is again Gaussian. We ex-
plain below how these system parameters may
be learned from data, but inferring the hidden
variables is the more basic problem.

Estimating variables The first fundamental
problem arising from the use of ADG models in
scientific problems is inference, or the problem of
calculating estimates for variables of interest in
the presence of observed data. Here, this means
finding the maximum a posteriori (MAP) esti-
mate of the most likely state of the unobserved
variables of the partially observed Markov chain,
given the observation:

arg max
u(1),...,u(T )

Pr(u(1), ..., u(T ) | z(1), ..., z(T ))

(3)
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In the continuous model, this estimate corre-
sponds to the trajectory of the sensor, and is
implemented for this specific case by the well-
known Kalman smoother [16, 23].

The ADG representation is so useful because
there exists a complete computational framework
for solving the inference problem for any graph-
ical model [15]. The usual methods for time se-
ries analysis are special cases within this frame-
work, e.g. the forward-backward and Viterbi al-
gorithms for hidden Markov models [26], and fil-
tering and smoothing operations in Kalman fil-
ters [18]. Furthermore, the computational com-
plexity of all these methods scales linearly with
T , the number of samples, so the computations
are tractable even for very long series.

Learning models While the structure of the
graph tells which variables depend on each
other, the distributional parameters quantify
how the dependence works via the probabili-
ties (1) and (2). As mentioned, either discrete
or conditionally Gaussian distributions are used
here, and these free parameters are generically
denoted θ. The second fundamental problem
of finding these models then arises: estimating
the distributional parameters from data, which
is only partially known via z(1), ..., z(T ). The
standard criterion is maximum-likelihood,

θ̂ = argmax
θ

Pr(z(1), ..., z(T ); θ) (4)

where Pr(·; θ) indicates that the probability de-
pends on the parameters θ. Intuitively, this
means varying θ to best explain the observation
z.

Since G contains unobserved variables, we use
the Expectation-Maximization (EM) algorithm
to estimate the parameters [7, 19]. EM is a gen-
eral technique for iteratively computing maxi-
mum likelihood estimates of parameters in the
presence of hidden variables u(t). This method
is well established in this context, e.g. for its ap-
plication to Kalman filtering see [24]. It is stable
and guaranteed to increase the likelihood at ev-
ery iteration.

In the context of hidden-variable models, each
iteration of EM contains a step (the “E step”)

which estimates the model’s hidden states; this
is the MAP estimate described above. This is
followed by an “M step” that determines pa-
rameter values for that combination of observed
and (estimated) hidden data. The parameters
are then updated and the cycle continues until
convergence. Similar to the case of the infer-
ence algorithms outlined above, the scaling is
linear in sequence length T for hidden Markov
and Kalman filter models. Typically, to deter-
mine on the order of tens of parameters from
time series on the order of hundreds of samples,
the EM algorithm will require on the order of
hundreds of iterations to complete. This takes a
few minutes on a modern workstation.

Checking models We use two main methods
to validate our results. The first uses residuals
and goodness of fit tests to check fitted mod-
els, mainly for internal consistency. Specifically,
in order to fit a certain observation sequence, a
corresponding most-probable sequence of hidden
variables are inferred from (3). This sequence
is governed by a model telling how it evolves,
and its adherence to the model can be tested.
For instance, the continuous-state Kalman filter
variables must evolve according to an autoregres-
sive, Brownian-type additive feedback with given
statistics. In the event of a mis-specified model,
the hidden variable sequence will need to be dis-
torted to fit the data that was actually observed,
and the residual tests will detect this. (For an
example, see figure 6.)

The second main method of checking results
is cross-validation [25], which can be used for
end-to-end model testing. In general, cross-
validation works by splitting the available data
into two parts, one for training and one for test-
ing. The training set is used to select a model,
and the model fit is evaluated on the test set.
This split-train-test sequence is repeated several
times for different splits to gauge model robust-
ness. This is done partly qualitatively, but also
by evaluating the fit, Pr(datas |models) for each
split s. This provides a way to judge the relative
performance of two different models, when one
has greater complexity than the other.
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Figure 3: Preliminary HMM analysis results for SCEC catalog seismicity data. Upper left: the class of
Transverse Range events; upper right: the class of Hector Mine and Landers earthquake aftershocks; bottom
left: the class of Salton Sea swarm events; bottom right: the class of Northridge earthquake aftershocks.

The next subsections describe how these in-
ference and model training procedures work for
seismic record and GPS sensor analysis.

2.3.2 Seismic Record Analysis

Numerous seismic records exist that contain, at
a minimum, the location, magnitude, and time
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of earthquakes that occur within a particular re-
gion over some period of time. These records are
a key source of information for understanding
patterns of earthquake behavior, fault interac-
tions, and the underlying stresses in the Earth’s
crust.

We propose to conduct an analysis of seis-
mic record data using hidden Markov models
(HMMs) [1, 2, 3, 4, 22], which as noted above,
are a special case of our general dynamical sys-
tem modeling framework. Preliminary work
performed utilizing HMMs for analysis of the
Southern California seismic record freely avail-
able from the Southern California Earthquake
Center (SCEC) led to some very encouraging
early results [13, 12].

Preliminary Results The SCEC catalog cov-
ers several decades of events, but for these exper-
iments we considered only events between 1960
January 1 and 1999 December 31. For this time
period the catalog is considered complete for
events of magnitude three and above. Directly
from the record, we extracted four attributes
for each event: latitude, longitude, depth, and
magnitude. We also calculated two derived at-
tributes based on the event times: the time to
the next event, and the time since the previous
event.

Example results from a preliminary experi-
ment for a seventeen state HMM are presented in
figure 3. For this experiment, we considered all
events of magnitude greater than four. Circles
indicate the location of earthquakes; circle size
corresponds to (floored) magnitude. Black lines
represent major faults, and blue lines represent
coastlines and bodies of water.

In the figure, we see that data was grouped
into meaningful classes and the technique did
associate earthquakes with underlying physical
processes. The four classes shown represent clus-
ters of aftershocks for the Hector Mine, Landers,
and Northridge earthquakes, Transverse Range
events, and Salton Sea area swarm events [17].

Methodology These results were obtained as
follows. We view a seismic record as a time se-

ries, with each event representing a point in that
time series. We used an HMM with the graphical
form of figure 2: a single discrete internal state
variable u controlling a six-dimensional observ-
able z. The characteristics of the events become
the observed values z(1), ..., z(T ), and we are in-
terested in the hidden values u(1), ..., u(T ). Each
of the N = 17 discrete states u(t) = i is asso-
ciated with a set of N transition probabilities
Ai = {ai1, . . . , aij , . . . , aiN}, and a probability
distribution of observable outputs bi. The tran-
sition probabilities determine the probability of
the next state given the current one.

Given this structure, we train the HMM: cal-
culate the model parameters θ = (A, b) that sat-
isfy (4). Then, given these model parameters,
we define the optimal state sequence via (3) as
that in which the state at each point in time is
most likely. The trained HMM is used to de-
termine the optimal state for each point in the
time series; the events are classified according to
their associated HMM states. Often, the HMM
is trained once with a subset of the data, and the
resulting model fixed and used to determine the
hidden states for new data.

First, given the state sequence, we can clas-
sify the events in a seismic record according to
their type. The properties of each class are de-
scribed by the output probabilities of the asso-
ciated state. Second, given the trained model,
we may analyze the pattern of interactions be-
tween different classes of events. These dynamic
interactions between types of events are revealed
through inspection of the transition probability
matrix A. For example, a high probability of
moving from one class to another implies a po-
tential causal link between the two classes of
events.

Application and Development These ideas
were tried on a pilot basis for this data, but the
more thorough analysis we propose should reveal
more about the nature and dynamics of seismic
events in Southern California. Also, we propose
to use the same methods on the Northern Cali-
fornia seismicity record to look for common pat-
terns and test the generality of the underlying
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method.
The HMM method in this experiment classi-

fied events into categories, but the number of
states N = 17 was chosen empirically. We
propose to equip the developed HMM analyzer
to automatically determine the number of event
classes in the data with the idea of cross-
validation presented in the preceding section, an
idea used successfully in another geophysical ap-
plication [27]. Cross-validation requires splitting
the data into two sets, for training and testing.
The simplest way is to train the model on con-
tiguous subsets of the data, and test it on a dis-
joint contiguous subset. Alternatively, it may be
more informative to remove the time element for
the purposes of state-number determination, and
first model the data using a non-dynamical finite
mixture model (FMM). In the FMM case, there
is no dynamical state dependence — the under-
lying state of each observation is chosen indepen-
dently. Because the FMM discards the time in-
formation, cross-validation can be performed by
splitting the aggregated time samples into train-
ing and testing sets which need not be contigu-
ous. This will give us another means to estimate
the number of states based on the distribution
of the observations in the parameter space.

Our method will not only require minimal or
no parameter tuning, but will also be able to re-
turn consistent results across experiments; this
frees the investigator from having to examine
numerous candidate results. The expectation-
maximization (EM) method used for optimiza-
tion of the HMM parameters can be sensitive
to the initial parameter estimates used to begin
the E-M iteration. This means that with a stan-
dard implementation, the results may vary from
experiment to experiment on the same data, de-
pending on the initialization method. This is due
to the existence of many local optima in the like-
lihood function, and for many applications, the
degree of variance in the results is low. However,
it is desirable to extend the applicability of these
methods to situations where the data are noisy,
sparse, or incomplete because of limitations of
the data collection equipment. We propose to
address this kind of data by employing a tech-
nique known as deterministic annealing [30].

The deterministic annealing approach makes
use of ideas from statistical mechanics to break
the main optimization problem down into into
a series of sub-problems. Each sub-problem is
characterized by a computational temperature
parameter which modifies the maximum likeli-
hood optimization criterion: the higher the tem-
perature, the fewer local optima are present.
The first sub-problem is solved at a very high
temperature, so that the distributions of the out-
put and transition probabilities turn out to be
close to uniform. Then the next sub-problem
is solved at a slightly lower temperature, so
that the distributions of output and transition
probabilities are slightly closer to that of the
original problem, this time using the previous
sub-problem’s solution as the initial condition.
This continues until the last sub-problem is com-
pletely “cool” and is, in fact, identical to the
original problem. Annealing regularizes the pa-
rameter estimates and helps avoid non-optimal
solutions: at the beginning of the process, all
the components of the solution are similar. As
the temperature decreases, the influence of each
observation is gradually localized. Because each
new global maximum is close to the old one as
the temperature decreases, the solution is able to
track it across temperature steps. At the same
time, finer structure, closer to that of the true
model, gradually emerges in the fitted parame-
ters.

2.3.3 Continuous Trajectory Modeling

In a second major thrust of this proposal, we
will detect patterns and new features in GPS
data coming from SCIGN, a new network of over
250 GPS sensors [14] that is analyzed to define
the relative position of the sensors to millimeter
accuracy. In this section we outline several av-
enues of scientific research built around the un-
derstanding offered by hidden-variable models.

Preliminary Results An application of the
HMM methods to this data is shown in figure 4.
In this case, the observed variables z are the
three-dimensional sensor position through time,
and the hidden variable is a five-state mode.
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Figure 4: HMM segmentation of a GPS signal recorded in Claremont, California. Note that the
HMM has distinguished between different modes of the signal, including behavior in 1998 resulting
from local ground water pumping, and the 1999 Hector Mine earthquake

When there is a shift in the observed displace-
ments, it shows up as a changed mode u(t). This
provides one principled way to detect changes in
the pattern of output exhibited by a sensor. For
instance, both the 1998 water-pumping signals
and the 1999 Hector mine earthquake are asso-
ciated with a change of mode.

One difficulty with the pure HMM method of
change detection is that it assumes homogene-
ity of the time series between state changes. For
example, over the course of a red interval of fig-
ure 4, a single type of output is observed, gov-
erned by P (z(t) |u(t) = red). This is approxi-
mately true over moderate time scales, but over
long periods the output will drift and a new dis-
crete state will be introduced to allow for the

✍✌
✎�
z1 ✍✌

✎�
z2 ✍✌

✎�
z3 � � �

✍✌
✎�
zT

✍✌
✎�
u1 ✍✌

✎�
u2 ✍✌

✎�
u3 � � � ✍✌

✎�
uT✲ ✲ ✲

✍✌
✎�
r1 ✍✌

✎�
r2 ✍✌

✎�
r3 � � � ✍✌

✎�
rT

❄ ❄ ❄
� � �

❄

❄ ❄ ❄
� � �

❄

Figure 5: Kalman filter with exogenous inputs

evolving behavior of outputs. This drift shows
up as residuals having systematic trends (see sec-
tion 2.3.1), and tells us the model is incomplete.
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Figure 6: Kalman filter models for continuous data from SCIGN station AOA1; analysis shows
slowly varying cyclic sensors motion and identifies two outlying points. The displacements (top
left) are modeled over time by estimating the two hidden variables (top right). One of these
variables is a high-frequency Brownian-type process which models fast variations in the position,
while the other hidden variable models slower trends at the time scale of months to years. Residuals
(north at bottom left, east at bottom right) show two deviations from Gaussianity at times 530
and 645 (circled).

Methodology This pattern of continuous sen-
sor motion can be modeled by a continuous
state-space model, or Kalman filter. As we see
below, there are several ways to do this, de-
pending on the information we want to extract
from the data. We initially propose a model of
the form of figure 5 for sensor trajectories —
in essence, a known forcing term r influences a
hidden state u which in turn produces outputs z.

The smoothly changing sensor positions are cap-
tured via a continuous hidden variable u(t) ∈ Rp.
For example, u(t) might contain the true sensor
position and velocity, neither of which is mea-
sured directly. In general, u(t) is an embedding
of the local physical process in a p-dimensional
phase space.

The Kalman filter models the evolution of u
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and the observations z as the recurrence

u(t + 1) = Au(t) + Br(t) + eu(t)
z(t) = Cx(t) + Dr(t) + ez(t) . (5)

The crucial point is that, as shown in figure 5,
u(t+ 1) depends only on u(t), the external forc-
ing r(t), and an independent error term eu(t).
Similarly, the observation z(t) depends only on
the state, the forcing term at that instant, and
another error term ez(t). (Both noise terms are
independent across time steps.) This simple de-
pendence permits the computational simplicity
of the Kalman filter, which updates u(t) incre-
mentally based on the corresponding values of z
and r. This ability to predict new states, and to
measure the deviation of an observed state from
its expectation, is useful as an indicator of novel
geophysical activity: see figure 6.

The ability to model sensor trajectories is not
of use unless the parameters θ = (A,B,C,D)
can be learned for a given sensor via (4), which
for this problem means solving

max
A,B,C,D

log Pr(z(1), ..., z(T );A,B,C,D) . (6)

This is just a Gaussian probability distribution
but it depends on the matrix parameters in
a complicated way. Complex gradient descent
schemes for (6) were known [6, ch. 7] but did
not reach wide use; more recently, simpler and
more flexible EM algorithms were introduced for
the problem [24]. These methods and their ex-
tensions have had great recent success in track-
ing visual objects [20], speech recognition [8],
and other applications. The simplicity of the
EM methods hinges on their use of the Kalman
smoother as a subroutine to estimate the hidden
variables u based on the observations; these esti-
mates are in turn used to update the parameters.

Preliminary Results Figure 6 shows an ex-
ample of a SCIGN trajectory that is modeled
by a two-state Kalman model, where matrix pa-
rameters A, C, and D were learned from data
using (6); B was taken to be zero. The forc-
ing term r(t) has two components: one equal to
unity for all time to allow for an arbitrary posi-
tion offset, and the other increasing linearly with

time to account for a constant velocity. The co-
efficients of D thus represent the sensor velocity.
Just under 100 EM iterations were required for
convergence.

The top left panel shows the original displace-
ments for 654 days from 1998 January 1 to the
Hector Mine quake, and the top right is the
two explanatory variables. It is apparent that
the first variable models high-frequency displace-
ment changes, on the order of one to two days,
while the other variable models longer trends,
which appear to have at least two superimposed
periodicities. The residual, the difference be-
tween the predicted observation and the actual
one, is very close to a white Gaussian sequence,
as shown by the close adherence of the two
lower quantile plots to a linear pattern. This
means first of all that Kalman model fit to the
data is self-consistent with its assumptions. Two
outliers are indicated as circles in these plots;
they correspond to small disturbances at day 530
(large North residual, also big enough to affect
the upper right plot) and day 645 (large East
residual) in the original time series.

This finding amplifies the use of these mod-
els as sensor-specific indicators of unusual behav-
ior — this behavior shows up as a non-Gaussian
residual on some days. It is also apparent that
the estimated model can be used with (5) to
fill in missing values consistent with the ex-
pected sequence behavior. This translates into
the hidden-variable framework as finding the val-
ues (z(t1), ..., z(t2), say) that are most proba-
ble given the other data, z(1), ..., z(t1 − 1) and
z(t2 + 1), ..., z(T ). This would be useful as a
preprocessing step for methods that require con-
tiguous data sets.

Research Initiatives One difficulty with the
pure HMM method of change detection is that
it assumes homogeneity of the time series be-
tween state changes, as seen in figure 4. This
limitation can be fixed by using a mixed contin-
uous/discrete system state u(t) = [u1(t)u2(t)],
where u1 is the integer mode and u2 ∈ Rp is the
continuous state. Now a combination Kalman
filter/forward-backward algorithm can be used
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to estimate the unknown parameters [10] using
the same EM algorithm methodology. This flex-
ibility indicates the power and generality of the
dynamical modeling methods we will apply to
the SCIGN GPS data.

Another analysis suggested by these results is
the identification of tropospheric delay errors by
identifying correlations in the residuals across
sensors. Such delays should affect nearby sen-
sors in the same way, by perturbing their values
away from the model prediction. A spatially co-
varying position residual would be one indicator
of such a delay artifact.

We also propose to determine microblock con-
stituents using SCIGN trajectory models. In the
GPS setting, sensors across crust boundaries will
have different motion patterns; we expect these
patterns to cluster into similarly-moving groups
at the spatial level of microblocks. GPS stations
on the same block will by definition rotate co-
herently with the block, while stations on differ-
ent blocks will present different motions. These
similar motion patterns will show up as similar
state-space models (A,B,C,D), which provides
one way to group sensors. Alternatively, in a
more sophisticated setup, a block tag would be
another (integer) hidden variable. The value of
this hidden variable would be learned by ana-
lyzing a group of sensors motions together. The
cross-validated model selection methods, more-
over, would provide an objective count of the
number of distinct microblocks.

As a related example, it is anticipated that sta-
tion velocities change with time throughout the
earthquake cycle. We would like to test the the-
ory that there exists a hidden continuous mode
variable which indicates the relative time within
the earthquake cycle of a given site and fault.
This dependence can be captured by introduc-
ing such a variable, influencing the hidden state,
modeling the time since the last energy release.
This mode variable could be inferred due to its
influence on the station velocity, aiding the as-
sessment of earthquake hazard. This could all
be done within the framework presented above.

2.3.4 Project Vision and Extensions

These methods will allow the geoscience commu-
nity to take advantage of emerging technologies
in the data mining and statistical modeling com-
munities. Two modes of operation suggest them-
selves. In the first, the scientist wants to find in-
stances of something whose features are known
and recognizable. For example, one might try to
find all instances of strike-slip faulting in an in-
terferogram. This mode of operation is probably
quite familiar in concept to most geoscientists.
In the other mode, the scientist may ask to find
any interesting features, patterns, or modes that
might be in the data without specifying a priori
how they will be recognized: this is the “discov-
ery” setting. When a pattern or feature is iden-
tified, the scientist is presented with a challenge
to explain it.

This type of exploring is likely to lead to
breakthroughs. It is also at risk of turning up
several dry leads for every breakthrough. For
this reason, the technologies we advocate above
are automated and easy so that it is possible to
sort quickly through many of them. The models
are flexible and extensible so that several alter-
native hypotheses can be formulated and tested
against each other by examining residuals and
cross-validation. This generality is possible due
to recent advances in the technology used to infer
explanatory variables from data in a statistical
setting. These models provide a way to use ad-
vances in computer cost and power not just to
yield more data, but to give scientists the means
to explain it.

This project will take place in the context of
the General Earthquake Model (GEM) project,
funded largely through NASA’s HPCC program.
The GEM project is developing a web-based
problem solving environment for modeling long
period earthquake processes. It will include:

• A database system for handling both real
and simulated data.

• Fully three-dimensional finite element code
with adaptive mesh generator capable of
running on workstations and supercomput-
ers for carrying out earthquake simulations.
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• Inversion algorithms and assimilation codes
for constraining the models and simulations
with data.

• A collaborative portal (object broker) for al-
lowing for seamless communication between
codes, reference models, and data.

• Visualization codes for interpretation of
data and models.

We intend to integrate the results of this
project into the GEM effort, and through it the
larger geophysical research community including
SCEC. This will provide a mechanism to make
the tools we develop available to the general pub-
lic, and will also allow us access to many datasets
through the GEM database system. It will also
allow us access to simulation tools with which we
will be able to test and/or train the algorithms
which we will be developing under this project.
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4 Management Plan

We anticipate that work will begin in September
2002. The task proposal calls for about 0.7 work-
years for both years of the project.

4.1 Investigator Contributions

The teaming of machine learning experts with
practicing geophysicists provides a strong basis
for accomplishing the research goals as well as
for developing knowledge discovery software for
other investigators to use.

M. Turmon Lead the investigation, perform
Kalman filter analysis, and help design and
implement modeling software.

R. Granat Perform HMM analysis, design and
implement general model inference mecha-
nism.

K. Hurst As a practicing geophysicist, will
provide guidance concerning interpretation
of patterns and statistics derived from this
investigation. As Project Manager of the
GEM project will oversee the integration of
the tools from this project into the GEM
environment.
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A. Donnellan As Principal Investigator of the
NASA/HPCC GEM project and as a prac-
ticing geophysicist, will provide guidance
concerning interpretation of patterns and
statistics derived from this project.

4.2 Milestones and Deliverables

Milestones are more detailed for the first year
of the project. In the second year we will expand
our analysis as detailed in section 2.3.4, and also
seek out other data sources to illustrate the gen-
erality of our tools.

Y01, Q1 Event classification for Southern Cal-
ifornia earthquake record using HMM tech-
nology.

Y01, Q2 SCIGN modeling and initial cluster-
ing (say, 20 stations) from SCIGN 3.0 data.

Y01, Q3 Analysis of multiple GPS sensors us-
ing HMM to identify signal modes that oc-
cur within a microblock or across multiple
microblocks using data that was cleaned us-
ing continuous-state SCIGN models from
Q2.

Y01, Q4 SCIGN clustering using 100 stations;
mixed continuous/discrete model for identi-
fication of behavior modes.

Y02, Q1 Report results regarding identifica-
tion of SCIGN modes and seismicity at the
AGU fall meeting.

Y02, Q2 Event classification for Northern Cal-
ifornia earthquake record using HMM tech-
nology to show generalization of methodol-
ogy.

Y02, Q4 Distribute software via GEM portal.
Analysis of results reported in journal pub-
lication.

Deliverables are the following:

• Analysis results: In the first year, we
will perform and report analysis of SCIGN
modes and seismicity activity clusters.
These results will be reported in confer-
ences, like AGU, and in publications.

• Software: The software we develop for mod-
eling seismicity patterns and sensor trajec-
tories will be released independently on the

GEM web site for use by the scientific com-
munity on the GEM web site. It will also be
integrated with GEM and released as part
of that project’s regular schedule. The soft-
ware will be written in C, allowing relatively
flexible use, and re-use in other applications
and for other datasets.

4.3 Facilities and Equipment

Seismicity data will be obtained from the South-
ern California Earthquake Center (SCEC) and
from the Northern California Earthquake Data
Center (NCEDC). GPS sensor position data will
be obtained as part of the regular SCIGN distri-
bution program. Other future data sources in-
clude the Japanese GPS network, and the Plate
Boundary Observatory network, as they become
available.

All software development for this project will
be carried out in the Data Understanding Sys-
tems group at JPL using two Sun Microsystems
Ultra 60/300 graphics workstations with 1GB
of RAM each. Data analysis will use these sys-
tems, and larger runs may use either of two,
32-node, gigahertz-class Beowulf clusters as nec-
essary. Medium-term and long-term storage is
available on a 218GB RAID-5 disk system and
multiple tape drives connected to these worksta-
tions. Because of this, equipment procurement
does not figure into our budget. Software avail-
able includes the Matlab, S-plus, Mathematica,
and C languages, as well as extensive modeling
tools for time series analysis and probabilistic
computations.
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Time Series Pattern Recognition for Classifying Seismicity Records and Geodetic Sensor Trajectories
(SENH Proposal)

For Period From October 2002 to September 2003
A B C

1.

2. Other Direct Costs:
a. Subcontracts $6.7

b.  Consultants $0.0

c.  Equipment $0.0

d.  Supplies $0.0

e.  Travel $0.0

f.  Other
     1. MPS and ADC $41.4
     2. Services $0.0

3. Indirect Costs* $9.2

4. Other Applicable Costs
     1. Award Fee $2.1
     2. Government Co-I

5.              SUBTOTAL--Estimated Costs $150.3

6. Less Proposed Cost Sharing (if any)

7. Carryover Funds (if any)
a.  Anticipated amount : 
b.  Amount used to reduce budget

8. Total Estimated Costs $150.3  XXXXXXX

9. APPROVED BUDGET  XXXXXXX  XXXXXXX
*Facilities and Administrative Costs

Year 1  Budget Summary

|      NASA USE ONLY       |

Direct Labor
(salaries, wages, and fringe benefits) $90.9
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Time Series Pattern Recognition for Classifying Seismicity Records and Geodetic Sensor Trajectories
(SENH Proposal)

For Period From October 2003 to September 2004
A B C

1.

2. Other Direct Costs:
a. Subcontracts $6.7

b.  Consultants $0.0

c.  Equipment $0.0

d.  Supplies $0.0

e.  Travel $0.0

f.  Other (MPS & ADC)
     1. MPS & ADC $43.9
     2. Services $0.0

3. Indirect Costs* $10.9

4. Other Applicable Costs
     1. Award Fee $2.0
     2. Government Co-I

5.              SUBTOTAL--Estimated Costs $157.0

6. Less Proposed Cost Sharing (if any)

7. Carryover Funds (if any)
a.  Anticipated amount : 
b.  Amount used to reduce budget

8. Total Estimated Costs $157.0  XXXXXXX

9. APPROVED BUDGET  XXXXXXX  XXXXXXX
*Facilities and Administrative Costs

Year 2  Budget Summary

|      NASA USE ONLY       |

Direct Labor
(salaries, wages, and fringe benefits) $93.5
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Cost Estimation Rates and Factors/JPL Cost Accumulation System 10/10/01

The NASA prime contract NAS7-1407 is a Cost Reimbursable Award Fee type instrument. All
costsincurred are billed to the Government on a 100% reimbursable basis. The costs to be charged for the
proposed work must be consistent with contractual provisions and established procedures for costing under
the current contract between NASA and Caltech. All charges developed at the Laboratory, including JPL
applied burdens, are billed to the Government as direct charges at the rates in effect at the time the work is
accomplished. Government audit is performed on a continuing basis by a Defense Contract Audit Agency
team in residence.

Distributive Cost Rates and Factors

JPL defines distributive costs as cost elements not directly identifiable with a specific
sponsor funded task. Major classifications under this category include: (1) Allocated
Direct Costs; (2) Multiple Program Support; (3) Employee Benefits; and (4) Service
Centers.

1. Labor Fringe Rates - Employee Benefits

The accumulation process applies JPL employee benefits on a composite basis.
Cost estimates will apply benefits as a percentage of total straight-time wages,
salaries, and overtime. Functions and activities covered by this rate include paid
leave, vacations, and other benefits including retirement plans, group insurance
plans, and tuition reimbursements.

2. Desktop and Network Service (DNS)/Telephone

Desktop and Network Service (DNS) links each personal computer to an
individual employee or accountable contractor. The DNS billing process occurs
monthly. Time charges generated by an individual during the month are the basis
of the cost allocation to specific projects or tasks. The billing process allocates
charges to an account worked on a proportional basis unless otherwise requested.
This same process is used collect costs for telephone billing.

3. Multiple Program Support (MPS) Factors

The MPS Rate applies costs for program management and technical
infrastructure. Cost estimates and application will apply the composite rate to all
program direct hours charged to projects managed by JPL.

4. Allocated Direct Cost Rates (ADC)

ADC rates contain cost elements benefiting multiple work efforts, including
Project Direct, MPS, and Support and Services activities. Rate applications for
cost estimates are specific to the given category as stated below.
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a. Engineering and Science (formally Labor ADC).  Applied as a rate per
JPL and accountable contractor straight-time and overtime workhours on
Project Direct, MPS, and Service Center activities.

  b. Procurement
 

(1) Subcontract.  Applied as a percentage of contracted invoice costs
related to subcontract  defined articles or activities.

(2) Purchase Order.  Applied as a percentage of direct procurement
invoice costs related to purchase order defined articles or activities.

c.         General.  Applied as a percentage of all costs except General pool costs
on direct

projects.

5. R&D Program Charge.  JPL applies the R&D Program Charge to cost estimates
for reimbursable

research and development funding (appropriations) to the extent the task utilizes
such funds. JPL defines all non-government funding as R&D funds. Cost
estimates will include this charge to
all appropriate new activities, and when revisions to the scope of work change the
baseline estimated total cost.

Cost estimates will include the R&D Program Charge by applying the rate
(percentage which is annually determined) to the sum of  total direct and allocated
direct costs for the cost estimates that are $250,000 or more.

This is a charge taken by JPL. It is the responsibility of the Contract Management
Office to determine the appropriate R&D Program Charge for each new cost
estimate including any revisions involving reimbursable R&D funding.

6. Award Fee

 Sponsors placing funds on contract contribute a percentage of task order dollars
to the award fee. The local NASA Management Office determines the rate
(percentage) annually. NASA applies the rate (percentage) to the funding
available net of the CAAS charge.

7. NASA G&A.  NASA applies this charge to reimbursable work. The basis for this
rate is total reimbursable cost (including DRDF and Award Fee) less CAAS
charges.

8. NASA Contract Administration and Audit Services (CAAS) Charge
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NASA applies this charge. NASA sets the actual charge through application of
the published schedule to the total reimbursable dollar value shown on the
Resource Authority Warrant (#506A or #822). This is a non-refundable amount
based upon the total agreement value (task plan cost estimate) and will be charged
on each order. If the total reimbursable estimate value is increased, the CAAS
charge will be recalculated and the customer charged accordingly.

All reimbursable efforts whose total estimated costs exceed $250,000 will be subject to
Award Fee and R&D charges as described above.
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Current and Pending Support

Dr. Michael Turmon

Current Support

Agency Title FY02 Total Period %
Award Award Effort

NASA
Code S

Startool: Pattern
Recognition for
Solar Imagery

$150K $450K FY00–FY02 0.2 WY

NASA
Code S
(AISRP)

Statistical Object
Identification,
Tracking, and
Analysis

$130K $400K FY01–FY03 0.14 WY

NASA
Code S
(LWS)

Evolution of
Magnetic Fields
and Variations of
Solar Irradiance

$20K $40K FY01-FY02 0.08 WY

Pending Support

Agency Title FY03 Total Period %
Award Award Effort

NASA — This proposal —

This proposal has not been submitted in response to any other announcements of opportunity.
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Current and Pending Support
(See GPG Section II.D.8 for guidance on information to include on this form.)

The following information should be provided for each investigator and other senior personnel.  Failure to provide
this information may delay consideration of this proposal.

Other agencies (including NSF) to which this proposal has been/will be submitted.

Investigator: Robert Granat None

Support:  Current  Pending  Submission Planned in Near Future  *Transfer of Support
Project/Proposal Title:Time series pattern recognition for classifying seismicity records and geodetic sensor trajectories

     
     
Source of Support:  NASA
Total Award Amount:  $307K Total Award Period Covered: 02-04
Location of Project:  JPL
Person-Months Per Year Committed to the Project. 5 Cal:     Acad:     Sumr:      
*If this project has previously been funded by another agency, please list and furnish information for immediately
preceding funding period.
NSF Form 1239 (10/99) USE ADDITIONAL SHEETS AS NECESSARY

55
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Current and Pending Support
(See GPG Section II.D.8 for guidance on information to include on this form.)

The following information should be provided for each investigator and other senior personnel.  Failure to provide
this information may delay consideration of this proposal.

Other agencies (including NSF) to which this proposal has been/will be submitted.

Investigator: Kenneth Hurst None

Support:  Current  Pending  Submission Planned in Near Future  *Transfer of Support
Project/Proposal Title: Detection and analysis of time-dependent Earthquake and Volcanic processes using space geodesy

In collaboration with Paul Segall at Stanford (lead) and Jeff McGuire at WHOI
     
Source of Support:  NASA
Total Award Amount:  $81.1K (JPL portion) Total Award Period Covered: 02-05
Location of Project:  JPL
Person-Months Per Year Committed to the Project. 1.3 Cal:     Acad:     Sumr:      

Support:  Current  Pending  Submission Planned in Near Future  *Transfer of Support
Project/Proposal Title:Understanding sub-surface volcanic processes using continuous differential microgravity and continuous
GP     
     
Source of Support:  NASA
Total Award Amount:  $292k Total Award Period Covered: 02-05
Location of Project:  JPL, UCLB, Open University
Person-Months Per Year Committed to the Project. 2.3 Cal:     Acad:     Sumr:      
Support:  Current  Pending  Submission Planned in Near Future  *Transfer of Support
Project/Proposal Title:Time series pattern recognition for classifying seismicity records and geodetic sensor trajectories

     
     
Source of Support:  NASA
Total Award Amount:  $307K Total Award Period Covered: 02-04
Location of Project:  JPL
Person-Months Per Year Committed to the Project. 1 Cal:     Acad:     Sumr:      
*If this project has previously been funded by another agency, please list and furnish information for immediately
preceding funding period.
NSF Form 1239 (10/99) USE ADDITIONAL SHEETS AS NECESSARY

55
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Current and Pending Support:  Andrea Donnellan
Other agencies to which this proposal has been submitted:

Investigator: Andrea Donnellan None

Support: X Current Pending Submission Planned in Near Future * Transfer of Support

Project/Proposal Title: Development of Fully 3-D Finite Element Model for Crustal Deformation Data
Source of Support: NASA/SENH

Award Amount (or Annual Rate): $570,000 Period Covered: 12/99 to 11/02

Location of Project: Southern California

Person-Months Committed to the Project. Cal.: 1 mos Acad: Summ:

Support: X Current Pending Submission Planned in Near Future * Transfer of Support

Project/Proposal Title: Numerical Simulations for Active Tectonic Processes:  Increasing Interoperability and Performance

Source of Support: NASA/HPCC

Award Amount (or Annual Rate): $2,208,000 Period Covered: 2/02 to 9/04

Location of Project: Southern California

Person-Months Committed to the Project. Cal.: 2 mos Acad: Summ:

Support: X Current Pending Submission Planned in Near Future * Transfer of Support

Project/Proposal Title: Automated Data Analysis of Geodetic Sensor Networks

Source of Support: NASA/CETDP

Award Amount (or Annual Rate): $291,000 Period Covered: 11/99 to 9/02

Location of Project: Southern California

Person-Months Committed to the Project. Cal.: 0.5mos Acad: Summ:

Support: Current X Pending Submission Planned in Near Future * Transfer of Support

Project/Proposal Title: GPS measurement of isostatic rebound and tectonic def. in Marie Byrd Land, West Antarctica
Source of Support: NASA

Award Amount (or Annual Rate): $300,000 Period Covered: 7/02 to 9/05

Location of Project: Antarctica

Person-Months Committed to the Project. Cal.: 3 mos Acad: Summ:

Support: Current Pending Submission Planned in Near Future * Transfer of Support

Project/Proposal Title:

Source of Support:

Award Amount (or Annual Rate): Period Covered:

Location of Project:

Person-Months Committed to the Project. Cal.: Acad: Summ:

Support: Current Pending Submission Planned in Near Future * Transfer of Support

Project/Proposal Title:

Source of Support:

Award Amount (or Annual Rate): Period Covered:

Location of Project:

Person-Months Committed to the Project.  (average per year) Cal.: Acad: Summ:

* If this project has previously been funded by another agency, please list and furnish information for immediately preceding funding period.
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Michael Turmon

M/S 126-347; Jet Propulsion Laboratory; Pasadena, CA 91109
+1 818 393 5370
turmon@jpl.nasa.gov

Education PhD 1995 Cornell University, Ithaca, NY
BSEE 1987, BSCS 1987, MSEE 1990 Washington University, St. Louis, MO

Experience Principal Member Technical Staff, 2001–present
Senior Member Technical Staff, 1995–2001

Jet Propulsion Laboratory
Principal investigator for solar feature identification project, which has developed
an automatic, scientist-trainable mechanism for objectively identifying solar ac-
tive regions from multimode imagery. The resulting software is now in use by
solar physicists at UCLA and Big Bear Solar Observatory.
Funded co-investigator on the SoHO spacecraft; supervise development of solar-
feature identification software to be incorporated into the standard data pipeline
for that mission.
Co-Investigator of CNES PICARD spacecraft; develop methods for robust iden-
tification of solar activity.

Visiting Scientist, June 1995–August 1995 Jet Propulsion Laboratory
Developed new pattern recognition techniques for Magellan SAR images of Venus.

Research Assistant, 1990–1995 Cornell University
Investigated learning in neural networks.

Research Assistant, 1987–1990 Washington University
Developed statistical techniques for direction-of-arrival estimation and radar
imaging.

Honors and
Achievements

Presidential Early Career Award (PECASE): 2000
NASA Exceptional Achievement Medal: 1999
Co-Investigator of CNES PICARD satellite: 1999–present
Best Paper by a Young Researcher, IASC Compstat conference: 1998
Co-Investigator, NASA/ESA SoHO spacecraft: 1996–1998
Invited to apply for AT&T PhD Fellowship: 1992
NSF Graduate Fellow: 1987–1990

Professional
Service

Member IEEE (Computer and Information Theory Societies)
Member Institute for Mathematical Statistics

Participated in technical reviews in the NSF IDM review panel, spring 1999, fall
2000.

Program committee memberships:

NIPS-00 (workshop on Software Support for Bayesian Analysis Systems)
CVPR-99 (Computer Vision and Pattern Recognition)
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KDD-98 (Knowledge Discovery in Databases)
NIPS-96 (Neural Information Processing Systems)
WCNN-95 (World Conference on Neural Networks)

Reviews for IEEE Transactions on Neural Networks, IEEE Transactions on Sig-
nal Processing, and Machine Learning.

Relevant
Publications

M. Turmon Statistical pattern recognition for labeling solar active regions: Application to
SoHO/MDI imagery. Astrophysical Journal. March, 2002. With J. Pap and S. Mukhtar.
A language for probabilistic modeling of scientific data. In Proc. Second Conf. Highly
Structured Stochastic Systems, pages 298–300, Pavia, Italy, 1999. With L. Ramsey, E.
Mjolsness and V. Gluzman.
Analysis of the SoHO/VIRGO total and spectral irradiances based on the SoHO/MDI
images. Presented at IUGG-99 (International Union of Geodesy and Geophysics), July
1999. With J.M. Pap, M. Anklin, R. Bogart, L. Floyd, C. Fröhlich, F. Varadi and Ch.
Wehrli.
Automatically finding solar active regions using SoHO/MDI photograms and magne-
tograms. In Proc. SoHO 6/GONG ’98 Workshop on Structure and Dynamics of the Sun,
pages 979–984, 1998. With J. M. Pap and S. Mukhtar.
Representing solar active regions with triangulations. In Proc. Compstat-98, pages 473–
478, 1998. With S. Mukhtar.
Recognizing chromospheric objects via Markov chain Monte Carlo. In Proc. IEEE ICIP-
1997, pages III, 320–323, 1997. With S. Mukhtar.
Bayesian inference for identifying solar active regions. In H. Mannila D. Heckerman and
D. Pregibon, editors, Proc. Third Conf. on Knowledge Discovery and Data Mining. MIT
Press, 1997. With S. Mukhtar and J. Pap.
Segmenting chromospheric images with Markov random fields. In G. J. Babu and
E. D. Feigelson, editors, Statistical Challenges in Modern Astronomy II, pages 408–411.
Springer, 1997. With J. Pap.
Generalization in feedforward neural networks. In IEEE 1995 International Symposium
on Information Theory, 1995. With T. L. Fine. Long paper.
Sample size requirements for feedforward neural networks. In G. Tesauro et al., editor,
Neural Information Processing Systems 7, pages 327–334. Morgan-Kauffman, 1995. With
T. L. Fine.
Sample size requirements of feedforward neural network classifiers. In IEEE 1993 Inter-
national Symposium on Information Theory, 1993. With T. L. Fine.
Maximum-likelihood estimation of constrained means and Toeplitz covariances with ap-
plication to direction-finding. IEEE Trans. on Signal Processing, 42(5):1074–1086, May
1994. With M. I. Miller.
Performance evaluation of maximum-likelihood Toeplitz covariance estimates generated
using the expectation maximization algorithm. In Proc. Fourth ASSP Workshop on
Spectrum Estimation and Modeling, pages 182–185, August 1988. With M. I. Miller, D.
L. Snyder, and J. A. O’Sullivan.
Efficient implementation of the EM algorithm for Toeplitz covariance estimation. In
Proc. Twenty-second Annual Conference on Information Sciences and Systems. Princeton
University, March 1988. With D. R. Fuhrmann and M. I. Miller.
The application of maximum-entropy aand maximum-likelihood for spectral estimation.
In IEEE 1986 International Symposium on Information Theory, October 1986. With M.
I. Miller and D. L. Snyder.
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Robert Granat

M/S 126-347; Jet Propulsion Laboratory; Pasadena, CA 91109
+1 818 393 5353
granat@aig.jpl.nasa.gov

Education PhDEE expected 2002 University of California, Los Angeles, CA
MSEE 1998 University of California, Los Angeles, CA
BSCNS 1992 California Institute of Technology, Pasadena, CA

Experience Senior Member Technical Staff, 1996–present
Jet Propulsion Laboratory

Principal investigator for real time earthquake location and imaging project,
which is developing crustal imaging techniques based on Kirchoff integration and
pattern recognition for rapid identification and localization of seismic events.
Task manager, intelligent systems project: develop machine learning tools for
automated analysis of geodetic sensor networks.
Key research and development roles for a number of projects: atmospheric time
series data analysis, large scale machine learning, automated spectral analysis,
fault tolerant computing, and sub-pixel change detection in images.

Research Assistant, 1997–1998 University of California, Los Angeles
Developed a neural network based real time method for imaging dynamic
ionospheric electron densities, for use with relocatable over-the-horizon radar
(ROTHR).

Research Assistant, 1994–1996 California Institute of Technology
Implemented and tested a model independent motion and structure recovery al-
gorithm for use on video sequences.
Researched a laser induced fluorescence (LIF) based method for detecting impu-
rities in large tokamaks.

Honors and
Achievements

NASA “Level B” Award: 2001
NASA Achievement Award: 1997

Professional
Service

Member IEEE
Member American Geophysical Union

Relevant
Publications

A hidden Markov model based tool for geophysical data exploration. In PAGEOPH
special issue, ACES meeting, Hakone, Japan, 2001. With A. Donnellan.

Estimating dynamic ionospheric changes without a priori models. In Radio Science,
35(2):341–349, 2000. With H. Na.

A neural network approach to imaging ionospheric motion. Master’s thesis, University
of California, Los Angeles, 1998.
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Kenneth J. Hurst

ADDRESS:
Mail Stop 126-347; Jet Propulsion Laboratory; 4800 Oak Grove Dr.; Pasadena, CA 91109;
Phone: [818] 354-6637; fax: [818] 393-4965; email: kenneth.j.hurst@jpl.nasa.gov
EDUCATION:
Columbia University, New York, New York PhD Geology, October, 1987
    Title of thesis: "The Measurement of Vertical Crustal Deformation"
Columbia University, New York, New York MPh Geology, 1987

MA Geology, 1982
Earlham College, Richmond Indiana BA Geology, 1980

BA Physics, 1980
EMPLOYMENT EXPERIENCES:
March 2001-present: Group Supervisor, Data Understanding Systems Group, Exploration

Systems Autonomy Section, Jet Propulsion Laboratory
1/2000-12/2001: Part-time Faculty, California State University, Northridge.
1997-2001: Senior Member of the Technical Staff, Satellite Geodesy and Geodynamics Group,

Tracking Systems and Applications Section, Jet Propulsion Laboratory.
1990-1997: Member of the Technical Staff, Jet Propulsion Laboratory
1988 - 1989: Post-doctoral Research Scientist - LDGO, Columbia University
1988: Research Assistant - LDGO, Columbia University
1987 -1988: Research Associate - University of Colorado
1987: Professional Research Assistant - University of Colorado
1983 - 1987: Graduate Research Assistant (Seismology) - Columbia University
PROFESSIONAL AFFILIATIONS:
Geological Society of America
American Geophysical Union
Seismological Society of America
National Association of Geoscience Teachers
AWARDS:
Co-recipient of NASA Group Achievement award
NASA Award for Excellence, April 1996.
Co-recipient of runner-up award in NASA software of the year competition 1995.
Co-recipient of NASA Group Achievement award for Global Positioning System Geodesy

Development, Jet Propulsion Laboratory, 1994.
Co-recipient of NASA Group Achievement award for development of the GIPSY-OASIS GPS

analysis software Jet Propulsion Laboratory 1992.
Departmental honors in Geology, Earlham College 1980. Deformation in the Shumagin Seismic

Gap, Alaska, Geophys. Res. Let., 14, 1234-1237, 1987.
All college honors, Earlham College 1980.
Anna Hubbard Grave, Thomas Clarkson Grave honorary scholarship for graduate work in

science, Earlham College 1980.
SELECTED PEER REVIEWED PUBLICATIONS
Hurst, K., D. Argus, A. Donnellan, M. Heflin, D. Jefferson, G. Lyzenga, The co- and immediate

post-seismic geodetic signature of the Oct 16 1999 Hector Mine earthquake. Geophys Res. Let
2733-2736, 2000

Argus, Donald, M. Heflin, A. Donnellan, F. Webb, D. Dong, K. Hurst, D. Jefferson, G. Lyzenga,
M. Watkins, J. Zumberge, Shortening and thickening of metropolitan Los Angeles measured
and inferred by using geodesy, Geology, 703-706, 1999.

Fox, G., K. Hurst, A. Donnellan, and J. Parker,Introducing a New Paradigm for Computational
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Earth Science - A web-object-based approach to Earthquake Simulations, Physics of
Earthquakes edited by John Rundle, DonaldTurcotte and William Klein, published by AGU
pp 219-245, 2000.

MClusky, S., S. Balassanian, A. Barka, C. Demir, S. Ergintav, I. Georgiev, O. Gurkan, M.
Hamburger, K. Hurst, H. Kahle, K. Kastens, G. Kekelidze, R. King, V. Kotzev, O. Lenk, S.
Mahmoud, A. Mishkin, M. Nadariya, A. Ouzounis, D. Paradissis, Y. Peter, M. Prilepin, R.
Reilinger, I. Sanli, H. Seeger, A. Tealeb, M. N. Toksoz, and G. Veis. GPS constraints on plate
kinematics and dynamics in the Eastern Mediterranean and Caucasus,J. Geophys. Res.,
105,5695-5720, 2000

Heflin, Michael, D. Dong, A. Donnellan, K. Hurst, D. Jefferson, M. Watkins, F. Webb, J
Zumberge, D. Dauger, G. Lyzenga, Rate change observed at JPLM after the Northridge
earthquake, Geophysical Res. Let. 93-96, 1998.

Kahle, Hans, C. Straub, R. Reilinger, S. McClusky, R. King, K. Hurst, G. Veis, K. Kastens, P.
Cross, The strain rate field in the eastern Mediterranean region, estimated by repeated  GPS
measurements, Tectonophysics, 1997.

Geoffrey Blewitt, Michael B. Heflin, Kenneth J. Hurst, David C. Jefferson, Frank H. Webb, and
James F. Zumberge, Absolute far-field displacements from the June 28, 1992, Landers
earthquake sequence,Nature, 361, 340-342, Jan 28, 1993.

Lundgren, Paul, Susan Kornreich Wolf, Marino Protti, and Kenneth J. Hurst, GPS measurements
of crustal deformation following the 22 April 1991, Valle de la Estrella, Costa Rica
Earthquake,Geophys. Res. Let. 20,407-410, 1993.

Heflin, M., G. Blewitt, W. Bertiger, A. Freedman, K. Hurst, S. Lichten, U. Lindqwister, R. Malla,
Y. Vigue, F. Webb, T. Yunck, and J. Zumberge, Global geodesy using GPS without fiducial
sites Geoph. Res. Let., 19, 131-134, 1992.

Beavan, J., R. Bilham, K. Hudnut, and K. Hurst, Techniques and results of crustal deformation
measurement using sea-level gauges, leveling and extensometers,in Crustal Deformation and
Earthquakes, ed. Wu Bing, Seismological Press, 302-319, 1988.

Bilham, R. G., and K. Hurst, Relationships between fault zone deformation and segment
obliquity on the San Andreas Fault, California, in Crustal Deformation and Earthquakes, ed.
Wu Bing, Seismological Press, 510-524, 1988.

Hurst, K. J., and J. Beavan, Improved sea level monitors for measuring vertical crustal
Ware, R. H., C. Rocken, and K, Hurst, A global positioning system baseline determination

including bias fixing and Water Vapor Radiometer corrections, J. Geophys. Res., 91, 9183-
9192, 1986.

Hurst, K. J. and R. Bilham, Hydrostatic levels in precision geodesy and crustal deformation
measurement,  J. Geophys. Res., 91, 9202-9216, 1986.

Beavan, J., K. Hurst, R. Bilham, and L. Shengold, A densely spaced array of sea level monitors
for the detection of vertical crustal deformation in the Shumagin seismic gap, Alaska, J.
Geophys. Res., 91, 9067-9080, 1986.

Bilham, R., J. Beavan, K. Evans, and K. Hurst, Crustal deformation metrology at Lamont-
Doherty Geological Observatory, Earthq. Predict. Res., 3,391-411, 1985.

Beavan, J., R. Bilham, and K. Hurst, Coherent tilt signals observed in the Shumagin seismic gap:
Detection of time-dependent subduction at depth?, J. Geophys. Res., 89, 4478-4492, 1984.

Hurst, K, K. VanZant, and C. Hurst, A new driving mechanism for hand coring, Palynology, 5,
81-84, 1981.
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ANDREA DONNELLAN CURRICULUM VITAE
Education

Ph.D., Geophysics, California Institute of Technology (1991)
M.S., Geophysics, California Institute of Technology (1988)
B.S., Geology, Ohio State University, with honors and distinction in geology  (1986)
Pursuing M.S., Computer Science, University of Southern California (present)

Professional Experience

Deputy Manager, Exploration Systems Autonomy (2000–present)
Supervisor, Data Understanding Systems Group, Jet Propulsion Laboratory (1999–2001)
Research Professor, Department of Earth Sciences, University of Southern California (1999–present)
Research Scientist, Satellite Geodesy and Geodynamics Systems Group, Jet Propulsion Lab. (1997–1999)
Member of Technical Staff, Satellite Geodesy and Geodynamics Sys. Group, Jet Prop. Lab. (1993–1997)
Visiting Associate, Seismological Laboratory, California Institute of Technology, (1995–1996)
National Research Council Resident Research Associate, NASA Goddard Space Flight Center (1991–1993)
Graduate Research Assistant, California Institute of Technology (1986–1991)
Research Assistant, Institute of Polar Studies, Ohio State University (1983–1986)
Geochemistry Group, Sohio Research and Development (1985)
Thin Section Laboratory Technician, Ohio State University (1983)

Selected Professional Activities

NASA Solid Earth Science Working Group for NASA HQ (2000-present)
US Rep. to the Int. Sci. Board of the APEC Cooperation on Earthquake Simulations (2000–present)
American Geophysical Union (AGU) nonlinear geophysics committee (2000–present)
JPL Science and Technology Management Council (2001–present)
JPL SESPD Science Advisory Group to Charles Elachi (1994–2001)
Plate Boundary Observatory steering committee (1999–present)
General Earthquake Models (GEM) program planning and other committees (1998–present)
Convenor NSF/NASA Sponsored Autonomous Systems in Extreme Environments Workshop (1999)
AGU 2000 and 2001 Spring Meeting program committee geodesy section chair (2000–2001)
AGU Geodesy representative for education and outreach (1999)
Southern California Earthquake Center (SCEC) Crustal Deformation Working Group (1993–present)
S. Cal. Integrated GPS Network (SCIGN) Coord. Board (SCEC rep: 1994–1998; NASA rep: 1999–2001)
UNAVCO Field Operations Working Group, Chair (1995–1997)
Development Oversight of SCEC GPS Educational Modules (1996–present)
Panel member National Earthquake Hazards Reduction Program External Research Program (1994–1999)

Selected Awards

JPL Lew Allen Award for Excellence (2000)
Southern California Earthquake Center Outreach Award for Education (1998)
Presidential Early Career Award for Scientists and Engineers (1996)
National Research Council Postdoctoral Fellowship (1991–1993)

Selected Publications

Granat, R., and A. Donnellan, Deterministic annealing hidden Markov models for geophysical data
exploration, PAGEOPH, in press.

Donnellan, A., J. Parker, and G. Peltzer, Combined GPS and InSAR models of postseismic deformation
from the Northridge earthquake, PAGEOPH, in press.

Hurst, K.J., D. Argus, A. Donnellan, M.B. Heflin, D. Jefferson, G.A. Lyzenga, J.W. Parker, F.H. Webb,
J.F. Zumberge, The Co- and Immediate Post-seismic geodetic signature of the 1999 Hector Mine
Earthquake, Geophys. Res. Lett., 27, 2733–2736, 2000.

Fox, G.C., K. Hurst, A. Donnellan, and J. W. Parker, Introducing a New Paradigm for Computational
Earth Science—A Web-Object-Based Approach to Earthquake Simulations, Geocomplexity and the
Physics of Earthquakes, American Geophysical Union Monograph, 2000.

Donnellan, A. and G. A. Lyzenga, Fault afterslip and upper crustal relaxation following the Northridge
earthquake, J. Geophys. Res., 103, 21,285–21,297, 1998.

Donnellan, A. and F.H. Webb, Geodetic observations of the M 5.1 January 29, 1994 Northridge aftershock,
Geophys. Res. Lett., 25, 667–670, 1998.
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